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UPDATING THE SYMMETRIC INDEFINITE FACTORIZATION
WITH APPLICATIONS IN A MODIFIED NEWTON'S METHOD

by

Danny C. Sorensen

ABSTRACT

In recent years the use of quasi-Newton methods in optimization algo-
rithms has inspired much of the research in an area of numerical linear
algebra called updating matrix factorizations. Previous research in this
area has been concerned with updating the factorization of a symmetric posi-
tive definite matrix. Here, a numerical algorithm is presented for updating
the Symmetric Indefinite Factorization of Bunch and Parlett. The algorithm
requires only O(nz) arithmetic operations to update the factorization of an
nXn symmetric matrix when modified by a rank one matrix. An error analysis
of this algorithm is given. Computational results are presented that investi-
gate the timing and accuracy of this algorithm.

Another algorithm is presented for the unconstrained minimization of a
nonlinear functional. The algorithm is a modification of Newton's method.
At points where the Hessian is indefinite the search for the next iterate is
conducted along a quadratic curve in the plane spanned by a direction of nega-
tive curvature and a gradient related descent direction. The stopping
criteria for this search take into account the second order derivative infor-
mation. The result is that the iterates are shown to converge globally to a
critical point at which the Hessian is positive semidefinite. Computational

results are presented which indicate that the method is promising.






Chapter 1

An Overview

1. Introduction

In recent years the use of matrix methods in optimization algo-
rithms has received an increasing amount of attention. Interesting
problems in numerical linear algebra have been generated by advances in
optimization methods. Similarly, new approaches to optimization methods
are sometimes made possible or even suggested by advances in numerical
linear algebra. Here the Bunch-Parlett factorization of a symmetric
indefinite matrix is used in a Newton-type method which is based on the
use of directions of negative curvature. In anticipation of the exten-
sion of these ideas for use in a quasi-Newton method, we present and
analyze a method for updating this matrix factorization.

In this chapter the problems which shall be considered are
introduced and motivated. Chapters II and IIT are concerned with the
updating algorithm and should be considered as a unit. On the other
hand, Chapter IV is meant to be self-contained. For this reason some of
the same concepts are introduced in both places. The numbering of equa-
tions is done separately in each chapter. For example, a reference
within a chapter to equation (2.1) means to refer to the equation
numbered (2.1) which will be found in Section 2 of that chapter. When-—
ever there is a cross reference between chapters it will be explicitly

mentioned,
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2. Newton-type Methods for Unconstrained Optimization

One of the major problem areas of numerical analysis is the

minimization of a non-linear functional. If we denote the n-dimensional
real vector space by Rn and the real numbers by R, the problem 1is:

given a domain Dc R" and a functional
£: D+ R

find x* € D such that
f(x*) < f(x)

for all x € D.
Usually the task of trying to find a global minimum of £ is too
difficult numerically, and we must be content with finding a local

minimum for f. That is, we seek
x* ¢ D

such that
f£(x) < £(x*)

for all x € N(x*) c¢ D where N(x*) is some neighborhood of x*.

Let

alf(x)
g(x) = agf(x) = VE(x)

a;f (x)

be the gradient of f at x, and let
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fallf(x) 8 ,f(x) .03, £(x)

9, f(x) 9, . f(x)....9, £(x)
6(x) 21 22 2n

Lanlf(x) anzf(x)....annf(x)J

- v’ £(x)
be the Hessian of f at x. For a sequence {xk} we shall write
fk = f(xk),
Gk = G(xk).

Assume that f has two continuous derivatives on D. Then the

Hessian matrix is symmetric, and for any x, X ¢ D we have

£(X) = £(x) + g(x) (5-x) +-%(§—x)tG(x)(§-x) +o(|x=x|%.

h(e) _

e 0. Thus f is modeled well locally

We write h(e) = o(e) if lim
e>0
by the quadratic form defined by the first three terms of its Taylor

expansion about x. If the Hessian G(x) is positive definite then the

quadratic form
t,= 1.~ t =
£(x) + g(x) " (xx) + F(x-x) 6(x) (x-x)
has a minimum at
- -1
(2.1) x=x -6 x)g).
Formula (2.1) suggests the iteration

(2.2) Given x, € D
for k=0,1,2,...

CrSk = 8k

ol - Xk Sk

"
1l



This is, of course, the well known Newton's method for finding a zero of
the gradient g(x). Thus Newton's method can be viewed as minimizing the
local quadratic model of f and also asg attempting to find a point x*

which satisfies g(x*) = 0. This is important since
(2.3) f has a local minimum at x* only 1f g(x*) = 0.

This method has two important properties that make it a very
powerful tool for the solution of unconstrained minimization problems.
The first of these is the basic simplicity of the iteration (2.2). The
second and most important property of Newton's method is the local
quadratic rate of convergence of the iterates. Loosely stated this
means that when the iterates xk of (2.2) converge to a point x* with
G(x*) nonsingular, then eventually the number of significant digits in
the approximant X doubles at each iteration. The more precise mathe-
matical statement is contained in the following theorem. Before the

theorem is stated it will be necessary to introduce the notion of a

point of attraction. A point x* is a point of attraction for the itera-

tion (2.2) if there is an open neighborhood N(x*) c D such that when
X € N(x*), the iterates defined by (2.2) all lie in D and converge to x*.

Theorem (2.1)

Assume that g: D c Rn -+ Rn is continuously differentiable on an
open neighborhood N(x*) < D of a point x* ¢ D for which g(x*) = 0, and
G(x*) is nonsingular. Then x* is a point of attraction of the iteration
(2.2). 1f, in addition, there exists a positive constant L such that
le(x) - c(x*)| f_L"x—x*".for all x € N(x*), then there exists a positive

constant C and a positive integer K such that k > K implies that



Iy - = < cll - =

k+1

A proof of Theorem (2.1) can be found in [17,

13

p. 312].

There are some major difficulties in implementing Newton's

method in its basic form. The first of these

difficulties is that there

is no reason for the Hessian to be positive definite at an iterate X

which is far from a local minimum.

Sy predicted by the quadratic model at X, may

Another difficulty is that the step

be too large or too small.

These difficulties have led to several modifications of Newton's

method. Many of the modifications have taken

(2.4) Given X, € D

for k=0,1,2,...

Gk = Gk + Ek

41 T e TSy -

The symmetric matrix E, in (2.4) is chosen to

k
definite. This implies that the direction Sy
t
(2.5) 85k < 0.

Thus the directional derivative of f at Xy in
tive and the function must decrease initially

direction s, that satisfies (2.5) is called a

k

descent direction s

X has been specified it is

positive number oy such that f(xk+aksk) < fk'

Of course, the particular way in which the matrix E

the form

A

insure that G

Kk is positive

satisfies

the direction s

X is nega-

in the direction sk. A

descent direction. Once a

possible to determine a

K and the
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scalar a, are determined are crucial 1in analyzing the convergence of the
iteration (2.4). Some success has been achieved with iterations of tYPe
(2.4) in specifying Ek,ak in such a way that the iterates x, are globally
convergent to a critical point x* (i.e. a point x* with g(x*) = 0).
Whenever possible these algorithms reduce naturally to Newton's method

so that the local quadratic rate of convergence is retained.

However, work in this area is not yet complete. In particular,
no algorithm has yet been given which can guarantee global convergence
to a local minimum. How can Newton's method be modified so that the
resulting iterates converge globally to a local minimum for £? 1In
attempting to answer this question, we have developed an algorithm which
is different from iterations of type (2.4). This algorithm is presented
and analyzed in Chapter IV. The algorithm is based more explicitly on
the local quadratic model for f in that the Hessian is not modified.
Instead, directions of negative curvature are used in combination with
the more usual descent directions. The resulting iterates {xk} are
shown to be globally convergent to a point x* such that g(x*) = 0, and
G(x*) is positive semi-definite. Thus by basing the iteration more
closely on the quadratic model we obtain an iteration which converges to

a polnt x* that satisfies the second order necessary conditions

(2.6) f has a local minimum at x* only if g(x*) = 0,

and G(x*) is positive semi-definite.

Yet another drawback to a modified Newton's method is the
expense in terms of both computation and programming effort associated
with calculating the Hessian at each step of the iteration (2.4).

Attempts to overcome this undesirable feature have led to a great dea]l



of research in a class of methods called quasi-Newton methods. These

methods replace the Hessian Gk with an approximation B A quasi-

K

Newton iteration has the form

2.7) Given Xy € D, and B

for k=0,1,2,...

0

BiSk = 78

xk+1 = xk + uksk

In iteration (2.7)

U = U(B

k K %Sk 817 81)

is usually a rank one or rank two matrix with

(2.8) Ber1Sic T Bra1 T Bk -
Equation (2.8) is called the quasi-Newton equation. The advantage of
iteration (2.7) over (2.4) is that the only new information required to
obtain Bk+l from Bk is the calculation of the gradient 81" The
computational savings is that only n instead of %nz scalar function
evaluations are required to obtain an approximate Hessian at step k.
Moreover, the task of programming the Hessian is avoided.

The price one pays for the computational savings obtained
through the use of a quasi-Newton method is that the local quadratic
rate of convergence that is enjoyed by iteration (2.4) is no longer

guaranteed. Instead, if the iterates {xk} defined by (2.7) converge to

a point x* where g(x*) = 0 and G(x*) is nonsingular, then

I -x*|
(2.10) lim —%311—;;—-= 0
koo xk_x ”

15
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under suitable restrictions on {Bk} and G. A sequence {xk} that satis~

fies (2.10) 1s said to converge Q-superlinearly to x*. A thorough
account of iterations of type (2.7) can be found in the excellent Survey

by Dennis and Moré [7].

Evidently, the linear systems

Cr8k = By

that must be solved at each step are central to the implementation of
these methods. Solving linear systems Ax = b using matrix factoriza-
tions costs 1/3 as much as computing A_l and has been shown to be
numerically more stable than computing A—l. Since the linear systems
arising in the context of non-linear optimization have symmetric coeffi-
cient matrices it is of great interest to obtain efficient and stable
methods for factoring symmetric matrices.

The advent of quasi-Newton methods has inspired a large portion
of the research in an area of numerical linear algebra called updating

matrix factorizations. Since the matrix B in (2.7) differs from B

k+1 k

by at most a rank two matrix, one might expect that the factorization of
Bk+1 could be obtained with less computational effort if the information

contained in the factorization of Bk were used. This has indeed been

found to be the case.

The types of quasi-Newton updating formulas that have been found

to be most successful so far have satisfied

(2.11a) Bk symmetric => Bk+l symmetric,

(2.11b) B, positive definite => B, ., positive definite.

For this reason, there has been much work concerned with updating



variants of the Cholesky factorization [9,13,14] of a symmetric positive
definite matrix. No algorithm has been given for maintaining and updat-
ing the factorization of a symmetric (possibly indefinite) matrix. How-
ever, there is at least one promising updating formula that does not

satisfy (2.11b): Powell's symmetric form of Broyden's update [18].
3. The Symmetric Indefinite Decomposition

The modified Newton method that is to be presented in Chapter IV
relies heavily on the factorization of a symmetric matrix given by Bunch
and Parlett [5] and later improved upon by Bunch and Kaufman [4]. One
would hope that the techniques developed for the modified Newton method
could be extended to a quasi-Newton method. As a step towards realizing
this extension, the updating problem for the symmetric indefinite fac-
torization has been studied. A numerical method for updating the
factorization of a symmetric matrix when followed by a rank one change
is presented in Chapter II. A detailed error analysis of this algorithm
is given in Chapter III.

As noted above, most of the work in quasi-Newton methods has
been concerned with maintaining positive definite approximations to the
Hessian. Hence the work in numerical linear algebra generated by these
methods has been primarily concerned with updating some form of
Cholesky's method for factoring a symmetric positive definite matrix.

The factorization of Bunch and Parlett does not require that the

n ,
this

. A, - . . . nx
matrix be positive definite. Given any symmetric matrix A € R
algorithm produces a permutation matrix Q, a unit lower triangular

matrix M, and a block diagonal matrix D such that

17



QaQt = Mot .

The diagonal blocks of D are order one or two. If we call an arithmetic
operation a multiplication followed by an addition, then the number of

arithmetic operations required to obtain this decomposition is

13 2 LI 2

en t O0(m™). (If x = ) a;n with a, # 0 we write x = O(n") and say x
j=1

is of order nk.)
Another algorithm for factoring a symmetric indefinite matrix
was given by Aasen {1]. In that algorithm one obtains

QaQ® = L1t

where Q is a permutation matrix, L is unit lower triangular, and T is

tridiagonal. This factorization requires %nS + O(nz) arithmetie opera-

tions also,

Since these factorizations both require %n3 + O(n2) operations,
an\updating algorithm for obtaining the factorization of a symmetric
matrix A = A+U when the factorization of A is known should require at
most O(nz) arithmetic operations. Otherwise, there would be no compu-
tational advantage over the alternative of actually computing the matrix
A and factoring the result. The updating algorithm presented in

Chapter II is concerned with the following problem:

nXn
RT,

Given A € A= At, z e R, oe¢ R, 1let

t
QAQt = MDM~ be the Bunch~Parlett factorization

of A; let
X = A+ ozzt
Find an algorithm to compute

QAQ" = MDM



which requires at most O(n2) arithmetic operations.

This algorithm makes use of the block structure of the matrix D.
We found no similar way to take advantage of the corresponding tridiago-
nal matrix T in Aasen's factorization. At present we do not know of an
algorithm for updating the factorization of Aasen. The updating algo-
rithm that is presented here requires between n? + 0(n) and %%nz + 0(n)
operations. The method is shown to be stable as long as the factor M is

well conditioned with respect to solving linear systems. These state-

ments are made precise in chapters II and III.

4, Computational Results and Conclusions

Chapter V is concerned with presenting computational evidence in
support of the theoretical work described in chapters II, III, IV. The
computations were carried out at Argonne National Laboratory using an
IBM 370/195. All computations were done in double-precision arithmetic.

The updating algorithm has been tested for accuracy and timing
over a wide range of updating problems. We have included timings for
problems of various orders. The accuracy of solutions to linear
systems using the updating algorithm have been compared with solutions
obtained by computing and factoring Atozz® at each step. The results
are very encouraging. They indicate that the bounds obtained in our
analysis are quite pessimistic and that the algorithm does not break
down even when the updating process is applied over many iterationms.

The unconstrained optimization algorithm was applied to many of
the standard test problems which appear in the literature. Although

more work is needed to obtain an algorithm that can be recommended for

19
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general use, the initial results show this algorithm to be competitive
with the algorithm of Gill and Murray [11]). 1In any case the underlying
idea is worthy of further research. It would be of great interest if
the ideas could be extended to a quasi-Newton method and to a con-

strained optimization algorithm.



Chapter II

Updating Factorizations of Symmetric Matrices
1. Introduction

Methods in numerical linear algebra are usually concerned with
the solution of a single linear problem. For example, a particular
method might be concerned with the solution of the linear system Ax = b

nxn n . . s
where A ¢ R and x,b € R°. Yet in practice we are often faced with
solving a sequence of linear problems which are closely related. For
instance, we may be interested in solving a sequence of nxn linear

systems

(1.1) Az, = b
Aer1 = M T U

In many cases of interest Uk is of low rank. Often the rank of Uk is

k=1,2,...

one or two.

Direct methods for solving the main problems of numerical linear
algebra have come to rely heavily upon the use of matrix factorizations.
For full matrices the price (in terms of arithmetic operatioms) of such
factorizations is generally substantial. For instance, the relevant
factorization needed to solve (1.1l) requires 0(n3) arithmetic operations
for each Ak' However, when Uk = Ak+1—Ak has low rank, one might expect
that the factorization of Ak+l could be computed in an order of magni-
tude fewer operations using our knowledge of the factorization of Ak'
For example, in (1.1) we would aim for algorithms which require only
O(nz) arithmetic operations.

Here we shall be concerned with factorizations used in solving

21



the problem (1.1) when the matrices A and U are symmetric, and where

k

each Uk 1s a rank one matrix. Then (1.1) has the form

(1.2) Ax = b
t
A1 = At oy

where each zk € Rn, o, € R, Ak = A;. This problem arises for instance

k=1,2,...

L}

k

in quasi-Newton methods for optimization problems [7].
Thus we shall concern ourselves with obtaining the factorizatiom

of
(1.3) A=A+ ozz"

not by forming A explicitly, but by using the factorization of A. Such
a process is called updating a matrix factorization.

There are two important and very distinct cases:

(i) A is positive definite,

(ii) A is indefinite.
In case (i) A may be factored in a numerically stable way into
A = 1oLt

where L ¢ Ran is a unit lower triangular matrix, and D ¢« Rnxn is a
diagonal matrix with positive diagonal elements. No pivoting is re-
quired to obtain numerical stability in the positive definite case.
However, in case (ii) such a factorization may not even exist. For
example consider the matrix

(1 )

A numerically stable method for obtaining a factorization of A in case



(ii) is given in [5] by Bunch and Parlett, and is later revised in [4]
by Bunch and Kaufman. By this method one obtains a permutation matrix

Q, a lower triangular matrix M, and a block diagonal matrix D such that

(1.4) QaQ® = mpM© .
The diagonal blocks of D are order one or two. Whenever Di+l 1 £ 0
then Mi+l,i = 0. Also, Mii = 1 for all 1i.

- The case in (1.3) where both A and A are theoretically known to
be positive definite has been studied and updating algorithms are given
in [9,13,14]. The case where A and A are symmetric but possibly indefi-
nite has not been studied.

In the following sections we chall present and analyze an algo-

rithm for computing 6, M, 5, when given the factorization (1.4), such

that

(1.5) QAQ" = MDM®
where A is given by (1.3). The algorithm requires between n2 + 4n and

%%nz + %gn +_%§-arithmetic operations and at most 2n comparisons. Here

an arithmetic operation is considered to be a floating point multipli-
cation followed by an addition. Divisions are counted as multiplica-
tions. The operation count compares favorably with the alternative of
t ) ) L et )
computing A + ozz and then factoring this matrix into MDM . This
. 12 . 1 . . 12 A
would require 70 + n multiplications together with S0 additions to

form the new matrix. It would then require at most

operations to obtain the new decomposition. Therefore, a total of at

most

23
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operations would be needed.

Thus it is advantageous to use the updating algorithm whenever
n > 10. However, it should be emphasized that the upper bound on the
number of operations required by the updating algorithm is a worst case
bound. Computational results indicate that the worst case seldom

occurs. Therefore, we expect that in practice the crossover number

would be much smaller.
2. Description of the Algorithm

We shall begin by describing a basic algorithm with no pivoting.
The algorithms given in [9,14] for the positive definite case will be
presented as modifications to this basic algorithm. The modifications
were designed to insure numerical stability. The algorithm we present
for the indefinite case 1s also a modification of this basic algorithm.
However, it is necessarily more complicated since the pivoting must be
updated.

Assume for the moment that no permutations were required to

obtain
A = vpM"
with M (block) unit lower triangular, and D block diagonal with one-by-

one or two-by-two diagonal blocks. Then we may write

° t
A= jzl MijMj ,

where the Dj are the diagonal blocks of D and the Mj are the block
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columns of M. Let
K = A+ ozzt ’

and let Mp = z. Denote

m
AL Z mpmt, & -V M,
j=k iy i=k 33
t _ , t _t t
where p = (Pl’PZ""’pm)'
Suppose that 51 = D1 + oplpi is non-singular, and let
D.b. = M= (2), t
lel OPy - Then take Ml = Ml +w bl. Note that only the elements
below the identity part of M1 are altered;
T 0
~ |x y
M x+y,
X y

where the x's and y's denote possibly non-zero quantities. We have that

(2)t (2) t

~ tt
(2.1) A= Ml(Dl + cplpl)M1 + c(Mlplw )

RGN

=y + w(z)bi)an(Ml + w? t)

+ cx(Mlplw(z)t + w(z)piMi)

(2)t (2)b 5 Mt )

- 1°1%

1D1,¥

+ (0 - b b w DDt

11
+ 4@

= M.D.ME + A(Z) + o'w(z)w(z)t .

Observe that the matrix A(Z) + c:'w(:z)w(‘z)t has the form
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421 113
as long as Bj = Dj + Gjpjpg is non-singular for 1 <j <m This assump-
tion on D, is theoretically always satisfied in the positive definite

3

case. However, this cannot be guaranteed in the indefinite case. After
establishing some preliminary results concerning these computations we
shall discuss some of the numerical algorithms that have been proposed

for the positive definite case.
Lemma (2.1). Let D and D + oppt be non-singular. Then the solution to
t
(1) (D + gpp)b = op
-1 t -1
is given by b = 6D "p, where 6 = /(1 + op D "p). Moreover,
t t -1
(11) det(D + opp ') = det D(1 + op D "p) and the
updated ¢' = 0 - stb

is given by

(111) o' = e —

1+ optD_lp
Proof:
(i) follows by substitution,

(ii) Sherman-Morrison formula (or direct computation),

(iii) follows by substitution.



Thus if all the Bj (for 1 < j < m) are non-singular we have the formula

g,
J .
o, = for 1 <j<m
j+1 t. -1 -2 ="
1+ o0,p.D,p,
JpJ pJ
d
an K _
I det D,
1= 3
o k ’
k
I det D
3=1
o’ ~
hence 1 = jet 2 .
0m+l et

In the case that both A and A are positive definite, these formulas
point out the necessity of maintaining cj with the same sign as o. We
note also that we may recursively compute tj = 051 as follows:

t -1
= t., + p.D. p.
g PJ 3 P. »

(2.2) t §

j+l
and we have the relation

tj+1 ) det Dj

(2.3) t.  det D,
j j

~

When A is positive definite, dj = det D s dj = det Dj and
D = diag(dl,...,dn).

Now, often in practice one knows theoretically that the matrix A
should be positive definite when A is positive definite. In the case
that ¢ is positive there is no difficulty since the recursion for the

t
~ t 4 ~
tj's yields an increasing sequence, and dj = —%—i dj' Thus the dj are
~ 3
all positive and dj z_dj. The following algorithm results for o > O:
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(2.4) €, = R O R —

for 1 = 1 step 1 until n do

(1) P, = wgi)

~ 2
(2) tyg =+ opy/dy

(3) 4, = di(t

1 /ty)

i+l
(4) terminate if i = n

(5) by = (pi/di)/ti+l
(6) SO ()

(7) M, =M +b.w

Note that the number of arithmetic operations required is n2 + 0(n),
since only i operations are needed at steps 6 and 7.
Difficulties arise when ¢ < 0 because round off error may cause

a to be positive, and hence Ei will be negative indicating that the

Fi41
computed X is not positive definite.

Two remedies have been proposed. One of these [9] is to compute
the vector p such the Mp = z at the outset. It is noted that in the
application to quasi-Newton methods, the vector p is often available
anyway. If 0 < 0 then calculate the tj’ for 2 < j ~ n+l from the formu-

la (2.2). If one of the tj should turn out to be positive then the tj

are recalculated using

(2.5) tn+1 = gfo ,

2
t t - p./d., j=n,n-1,...,1
pJ/ 3 j

j j+l
where ¢ is the relative machine precision. These new values of ti are
then used in place of the old ones in (2.4), steps 3 through 7. The

effect is to replace ¢ by tIl which gives a problem that is close to the



original problem, and for which the computed A will be positive definite.
In [14]) another approach is taken which yields a similar algo-
rithm. The major differences being that tn+1 is set to £ if some tj is

positive and a backwards recurrence formula is used to compute M. Thus,

in place of (2.4) steps 6 and 7, we would have
(2.6) WD 2 g

for i = n step -1 until 1 do

(L wgi) =Py

_ (i+1)
(2) Mi = Mi + biw
(3) w(,i) _ (341) + o M
el i

However, there seems to be the need for additional storage in
(2.6). Note that the computation of w(i) requires knowledge of Mi which
has presumably been overwritten at step (2) of (2.6).

In [9] an error analysis of this process has been given. That

analysis shows that

MDMt=A+ zzt+E,

where the elements of E have first order terms in € which depend on the
ratio fﬁ;7§; in (2.4) step 7 is used. However, it is possible to show
that
2.7) Moo= @, /3) +bud

i ivit i i
and here the error terms depend on the ratio /E;?ﬁ;-which is less than 1
when ¢ > 0. In both [9] and [14] one switches to (2.7) only if the
ratiO'/§;7a;-becomes larger than some bound.

This leads us to the following algorithm which is a slight
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modification of the composite t-method given in [9]).

(2.8)

(1)
(2)
(3)
(4)
(5)

(6)

@ _

terminate if 0 = 0; put t, = 0-1 and w =

1
if 0 > 0 go to 6;

if p is not available solve Mp = z for P;

for i=1,2,...,n do t

i+l
if any ty > 0 then
begin
t 4l elo;
for i=n,n-1,...,1 do ti = ti+1
end

for i = 1 step 1 until n do

if ¢ > O then begin p,
8y = tyap/tys 4 = djey;
terminate if 1 = n
by = (py/dp) /ey s
15-91 > 4 then
begin
Yy Tt/

5 (1)

= YiMi + biw s

i
w(i+1) - w(i) _ piMi;
end
2lse
begin
(i+1) w(1) - p M
Mi = Mi + biw(i+l),

2 .
ti + pi/di,



The situation becomes completely different when the matrices A and A are

not assumed to be positive definite. 1In order to obtain a stable algo-

rithm for solving Ax = b pivoting must be used to factor A [3,5] and we

obtain

0aQ" = vom® .

Moreover, the following example shows that Si in (2.1) may be singular

even though both A and A are non-singular.

0 1 o0
Let A = 1 0 0 (= MDMt, where M =T and D = A),
1
0 0 A
=1 - t
let o 50 2 (1,-1,1)". 101
- 0 1 1 1 2 2
Then D, = + = [1,-1] = is singular but
1 2 1 1
1 0 -1 5 =
2 2
A=A+ czzt satisfies det A = - %u Therefore, some pivoting strategy

must be employed to avoid the breakdown of the computationb(Z.l). The
main difficulty in updating the pivoting strategy is maintaining M in
triangular form.

We shall now describe the pivoting strategy given in [5] for the
Bunch-Parlett factorization in some detail. This strategy will be used
in a portion.of the updating algerithm, so we include its description
for the sake of completeness.

Given a symmetri¢ non-singular matrix A with elements aij the

factorization proceeds as follows:

Let 0 < o < 1 be fixed.

Let v = max |a,i| and let y = max la
1<i<n * i#3

!
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If v > au, let 1 be the smallest index such that |a11| = v. Let Q1 be
the identity matrix with rows 1 and 1 interchanged. Then the matrix

t
QlAQ1 has the element ay in the (1,1) position. The first step of the

factorization is to write

t 8 vt
Q,4Q, =
(v A
r \t
1ol & 0 o0
e Tl 0 an-g] J v~ I
Thus
§ 0
-1 t -t 1
M "Q.AQ-M.T = ,
1 1711 0 A(2)
1 0
where M, = , and A(2) = A' - 6-1vvt. If v < au, let i > j
1 Vd_l I 1

1
indices such that Iaijl = u. Let Q1 be the identity matrix with row i

interchanged with row 2 and row j interchanged with row 1. Then the

matrix QlAQi has the element a in the (2,1) position. 1In this case

i3
the first step of the factorization is to write
t | v
Q4 =
\Y A'
\
( t
I
_ 0 Dl| } I 0
-1 ' -1t -1
yDl 1 0 | A VD1 \ J VDl I

Here V is the first two columns of QlAQi below the (2,1) and (2,2)

positions, and D, i1s a two-by-two matrix. Also, det D -

a2
13

1 17 811943

5_(a2—1)u2 < 0. Thus

D1 0

-1 t, -t
M, Q,AQ/M. = s
1 1711 0 A(2)



I 0
where M, = [_ , and A®) = ar_ypTvE,
1 -1 1
Vo~ I

The factorization now proceeds by applying the same pivoting strategy to

)

the reduced matrix A The end result is that

1 -1 -1 -t £ -t -t _
M QM1 %y - My Q1AQ§M1 o Qe M UM D

where D is a block diagonal matrix with 1x1 or 2x2 diagonal blocks.

Hence,
= t.t t t. t
A= QQ,M, ... QMDMOQL ... MQJHQ) .
Since Q;l = Q; for 1 < i < k we may write

QM QM, . .Qu M = QtMle...Mk ,

where Qt = Qle---Qk’

t .t t
Mj B Qj+le+2"'QijQk'"Qj+2Qj+1 :

and

Then ﬁ5 has the same form as M.j and thus if we take

M = MlMZ"'Mk
then M is a block unit lower triangular matrix such that

0aQt = oMt .

For fixed a, 0 < @ < 1, the strategy just described shall be
called the diagonal pivoting strategy Sa' When a is chosen to be
(1+VI7)/8, the factorization is almost as stable as Gaussian elimi-
nation with complete pivoting [3,5]. A modification of this strategy,
which is comparable to Gaussian elimination with partial pivoting, is

1
given in [4]. The algorithm in [5] requires between ;LﬂS + %nz + Zn

12
13,12 1 . . . .
and gn” + 30" + §n comparisons, while the algorithm in [4] requires at

2 .
most n -1 comparisomns.
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Now, in order to establish the theorem that we shall use toO
construct the algorithm for updating this factorization shall need some

preliminary lemmas.

x
Lemma (2.2). Let A ¢ RT™ be symmetric with eigenvalues A; < AZ <eeel A
~ t ~
and let A = A + o0zz for some z ¢ Rn, 6 e R. If 0>0 then A has eigen-

values Xi such that

)\lixlik i"zi---i)‘ <A,

2 n

n

while if 0 < O then the eigenvalues of A can be arranged so that

X, <A 5_% < ... :_i <A

1-"1 2 n n °’

M

Proof: [20] pp. 95-98.

~

Remark: In particular if A is non-singular then at most one of the Ai

is zero.

With Lemma (2.2) and the pivoting strategy just described we can
establish
Lemma (2.3). Let V = (é,), where I € R£x£ and V' € kaz. Suppose that

D= Dt € szz is non-singular and that w ¢ Rk+£, o ¢ R. Define

(2.9) c z vDV' + oww®

Then there is an £x£ permutation matrix Q such that
Q 0 R e - S

(2.10) (0 1) C 0o 1/ = VDV~ + {(v,w)B(v,w) ,
T
L}
ww

where

(i) D is a non-singular block diagonal matrix with 1x1 or 2x2
diagonal blocks,

(11) V is block unit lower trapezoidal,

n



(0
o - x
(iii) v = |1, v € RT,
V)
(iv) w= |0|, we R, and
w)
(v) B¢ szz
Proof: Write
D O :
(2.11) C = (V,w) (V,w)
0 o
(1 0 D us I o |\t
= 1 t 1
v' - 1] g Vl = ]
L . w'ilus v n v
where
w
w = 1 s Wy € Rz, w' = WZ—V'Wl,
w
.2
- t
D=D+ owlwl,
and s = owl .

Here pu may be any positive real number; if u is chosen small enough then

the diagonal pivoting strategy Sa will give either

Q 0)[D us)(Q"o
(2.12)
0 1 us o 0 1

N

ﬁo[ﬁofﬁo
bt 1 l 0wl lubt 1

or
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—_— ~

0 o .
M 0 v

0 D % o M 0 0
1 o|lo o & usl|m 1 o

ub" 0 1/l 0 0w wle'|{upt o0 1

where D is block diagonal with 1x1 or 2%2 diagonal blocks, and M has the
corresponding block unit lower triangular structure. Since D is non-
singular, Lemma (2.2) implies that D has at most one zero eigenvalue.
The diagonal pivoting strategy preserves the inertia of D. Therefore, D
is non-singular. Note that § = 0 in (2.13) if and only if D is singular
and in this case we cannot carry the decomposition further without per-

muting the last row and column of
(D s

t 2

us vo

If (2.12) is obtained then

Q 0 Qt o
C
0 I 0 1
(Qq o)(a® o Yfq o)(D ws)({Q o)(qt Qt o
L 0 I v'Q* %-w'J 0 1 \ust UZOJ 0 1 J v'Q* %—w' 0 I
I 0 [ M oD ol(®M ol({r o )
= - ~ 1
W %-w' lubt 1410 uzo' ubt 0 | \ E—w'
( 1 N - t
M ) [ D O M | 0
= — [ o t| , where
{ +w'btl W' l 0 o'JIVM+ w'b | w'
. t
I 0 fqQq o Q { I
~ = = t
(V0 { o 1]lviaf |v'a



Here we take

V=1, el and w = w'.
VM + w'b
If (2.13) is obtained then
Q o) {Q"o
C
0 I 0 I
Q o)(Q" o Q 0)(D ws)(Q o)fQ" o YfqQ'o
o 1 {v'qt %w' 0 1 )lus® wiojlo 1)lvat %w' 0 I
3
- ~ = t
M 0 O D M 0 O t
I 6 0 ¢ e [IO 0
= “ m 1 0 0 0 uB 1 0 n .
1 1
vV v = ¢ 9 ¢ l V v T
H pb- 0 1 [o 0 ug uo'jlub- 0 1
. 0 0]
D
_ — t
M ol o 0 01l(xu lolo
= |._ el 00 88 (|_ _, el
V™ + vat + w'b | v | w' WM+ vm +w'b | v | w
OOBU'J
0 Q 03[ q" 1 )
where n = =
vV v 0o 1 lvqt V'QtJ
| -
Here v= | _ |, where v e R,
| 5
and we take
. (M § B _
V=1 -t t’B- s W=,
VWM+vm + w'b B o
This gives the desired result. 0

Observe that the scale factor u does not actually enter into the
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computations and thus explicit scaling need not be implemented in a
code. Also, we note that for the intended application, we will have

£ <3 in Lemma (2.3). When £ < 3 we have

D O N
C= (V,W) (V,W)
0 o

with D of order at most 3. Then in the computations non-singular
matrices of order at most 4 are inserted between the factors on the

right and permutations are used to obtain

t
Q 0 Q0 ~ -
C = (Vlv,w)
0 I 01

Thus, some fixed number of arithmetic operations are required to compute
D and B. Also, some fixed multiple of k arithmetic operations are
required to compute v.

Before we give the main theorem of this section we shall need to
establish one more lemma. The proof of the lemma is trivial but it is

included for the sake of clarity in some of the following computatioms.

6 8 2x2
Lemma (2.4). Let B = e R , where B # 0. Then
B o
1 -y A, 0 1l vy
B = 1 ,
Yy 10 af|-y 1

with [A | > |A2|.

Proof: Let HysHy be the eigenvalues of B with Iull 3_|u2|. Since

1
B # 0, B has an eigenvector corresponding to My of the form (Y)' Thus



Therefore, S+HBy = u .and since B # 0

1
we have Y = (ul—G)/B .

Since B is symmetric it has an orthonormal system of eigen-

vectors. Thus

where A, = u./(l+yz), i=1,2.
1 0

The following theorem will show how Lemma (2.3) can be used to

obtain an 0(n2) updating algorithm.

Theorem (2.1). Let A ¢ Rnxn be non-singular with QA.Qt = MDMt. Suppose

n
that z ¢ R', ¢ ¢ R are such that
~ t
A=A+ oczz

is also non-singular. Then 6Z5t = MDMt can be computed from the factor-

, , . 2 . . .
ization of A in O(n”) arithmetic operations.

~

Proof: Let w = Qz. Then QXQt = MDMt + wat. We denote
k m
K(k) = z M.ﬁ.ﬁ?, A(k) = Z M.D.MF. First we may write
21 331 j=k 4 3 J
] J
I w D O I w t
et~ | Ll +a@ = ¢ 4 @
\ v, 0 o \Y Wy
I vy
with M1 = , W = , D= Dl' Then by Lemma (2.3) we may
Vv W,

construct a permutation U1 such that
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10 1 0t
1) B ’
vy v v, w'
or
t o o)"
Up 0 ) yfugo0 1) _ (1)t 0 0
(2.14) C = (11) (%) +/1 ofB|1 O
0 I 0 I v v ] '
2 2 v1 w L Vl w
or
1) (1)1t 0 .
(111) D +a' o,w'") ,
v 1 \' w'
1 1
where 8 # 0, 51 € szz is non-singular, B ¢ szz, and o' € R, Observe
t
U, o U, 0
aiso that 1 A(2) 1 = A(Z). If (1ii) 1is achieved then the
01 0 I
problem becomes
~ b ~(1) L (2) 0 t
QAQ; = A + A + 0 o,w'") ,
w'
Ul 0
where Q1 = Q. Note that
0 I
0
AR B TR
w'

has the same form as the original problem but the dimension of the prob-
lem is decreased to n-1 or n-2.

In the following discussion we shall drop the primes and sub-
scripts from the expressions on the right of (2.14). Also, some of the
qualities appearing in (2.14) are redefined below.

If (i) holds in (2.14), then



QIKQ; =

while if (ii) holds then

0
Qhef =AM + |1 o (B[ 1 0| +a®
v

0 vV W w
Let I | = MZ' Then we may write
\'
(1) c(® 4 A(3),
t—
QlAQ1 = <O0r
1) A 4 ¢ 4@
In (i) we have
1 0 0 (1 0
@ _ |z = BOoll- -
(2.15) C =|v ¥ v, W ,
l R 0 D 11
vy W, v _ 271 v, W,
r ;1 f v'—71
and a similar expression in (ii). Here v = | _ and w = | | have
( V2 V2

been partitioned so that Vgl and Vﬁl are defined.

Now if (i) or (d4i) occurred in (2.14) then

[ s g
B:
B o

satisfies |6| < o|B|. Hence by Lemma (2.4)

-y \[a, 01 v
y 100 aJlv 1

with 1Al| z_lk2|. Moreover, A, # 0 since A; = 0 implies that B = 0.
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Let 1 w 1 0
0 - 1 -~y
v, w2 v2 w2 Y 1

Using this expression in (2.15) gives

(1 0 w Y(a o 1 o w. )\t
(2.16) C T I !
1 2 Vi 1
L v, \' Wz I 0 2 v, V w
4 W N t
1 0 : o lfd o 1 0 } o
= 0 I | w 0 1 | wl
—"——v_'——j [0 2, ——
v
LYy | wz v2 Vv | wz

v1 I 0D v1 I

Lemma (2.3) may be applied to obtain

A 1 0)fx, 01 0)F
with D = non-singular and v, = v.~Vv_. Now,
2

0 0 0
0 [B]1 O ’
v, w v, w
U, 0) [V © INItJ]' 1
C =1~ D! - + or
0 I 0 I A v
f o
o' . |€0,%5
L w
(1
We take 51 =D and ﬁl = ‘ _ |- Case (ii) of (2.14) is similar. This
v

process may be continued until the full updated factorization has been

attained.

To see that only O(nz) operations are needed, observe that a
small fixed number of arithmetic operations (bounded by b say) are re-
quired to obtain a new diagonal block. Manipulating the columns of the
triangular matrix M at step k requires some fixed multiple of (n - k)

arithmetic operations (bounded by a say). Thus, there are at most
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a(n + (n-1) +...+ 1) + bn = _‘_lan(;ﬂ + bn

arithmetic operations required. 0

We remark now that the implementation does not actually rewrite

2
C( ) as in (2.16). 1Instead, (2.15) is written as
( t
1 0 § 0 B 1 0 O
(2)
2.1 =
( 7 C vy I 1 0 D2 0 vy I wl
v2V WZJ\BOU v2V v,
- vt
[1 0=0MDb 10{0
= 0 I 0 0 I 0 .
l t |
_——T—-\b o _N___l_:_
- 10 § 0 BY(1 0 0)F
D b
where bt . = vy Wl 0 D2 0 1 I wl
0 0 1 B 0 o 0 0 1

Multiplying the matrix factors and then equating matrix elements
will show that D in (2.17) is equal to the matrix B-appearing in ex-
pression (2.11) of Lemma (2.3) if we had first obtained (2.16) and then

(2)

applied Lemma (2.3). After this form of C has been obtained, the
factorization may proceed as described in Lemma (2.3).

We are ready now to give an Algol-like description of the imple-
mented algorithm. Some of the details have been left out for the sake
of simplicity. The most notable of these omissions is that when updat-

ing a diagonal block D, we may obtain two 1x1 blocks instead of a 2x2.

k
The explicit bookkeeping involved is not present in this somewhat
simplified description.

In the following description of the algorithm we shall make the

following conventions:



(1) The expression a : = b means b overwrites a.

(2) D will be a matrix of order at most 4. An expression of
- D O
the form D : = will mean we have increased the
- 0 ¢
size of D with elements defined as indicated. Similar

remarks will apply to the arrays V and B.

0
(3) At step k, w will always have the form w = v, |» where
Y2
v has 1 or 2 components whenever Dk is 1x1 or 2x2

respectively. Matrices Q and Qk are permutation matrices.

r

Let QAQt = 2 MijMg, g, z be given. Let 0 < a < 1 be fixed. The
j=1 ~ ~ A ~

following algorithm will compute MijMg and Q such that

r
QA + 0zz5)Q" = J M.D.M.
=1 J 13
J
(1) begin
w:=0Qz; k:=1;3 :=1;
D, + ow.w, oW
.= | 1 "1 "1y, C e MW =w - .
D = s Vo Ml’ w w lel,
ow g

(z) L1 : comment decompose ﬁ as described in Lemma (2.3);

t —
Q 0.1 Q 0 | D 01
k p| K =M M,
0 1 0 1 0 B
D: = 5}
(3) if B is 1x1 then
begin t
Ny Q © Qe 0\
M ,w) @ = (V,w) M;
0 I 1
6 :=B; D, : =D;



(4)

£:=orderof5kj;k:=k+l;j:=j+£;
~ _ t
D: = Dk + Gwlwl

if (j = n and D is 1x1) or (j =n -1 and

|521|a > maX(lﬁlll, Iﬁzzl)) then go to QUIT;

D ow

>

. = 10 . = —_ . ¢« = .
D : t s W w Mkwl’ Vv : Mk’
ow,; G
1

Update Q with Qk;

go to L1;

end;
if B is 2x2 then
begin

Q0 Q O
k —_
@, v, w o= | @ i
0 I 0o 1
5k =D; £ : = size(ﬁk); k:=k+1;j:=3+4
if j > n then begin Sk : = Bll; go to QUIT; end;
( By, O By, |
D: = 0 Dk 0 H
B O Paa )
L -W
(v, w) : = (V, Mk t W) ; comment where (V, Mk)
L O 1
- [ L LA Lt 0
D = D t H
t 0 1 Wy 1

go to L1;

end
QUIT:

end.
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We refer the reader now to the brief flow diagram (Al) describ-
ing the pivoting strategy and to the program listing (A2) in the
appendix. The operation count that follows refers to that particular
implementation. The results of the operation count are given in Table 1.

By an f-step reduction we shall mean that £ columns of M and
the corresponding diagonal blocks have been completely determined by the
algorithm we have just described. Operations at step k which are
carried out on columns of M or the vector w contribute to the O(nz) por-
tion of the operation count and will be referred to as operations of
type-A. Operations needed to update a diagonal block will be called
operations of type-B and they contribute only to the linear term in our
operation count. We shall consider an operation as a multiplication and
an addition; with this convention we are ignoring the important contri-
bution of interchanges to the O(nz) term. The paths cited refer to the
flow diagram (Al) in the appendix.

Table 1 needs some explanation. The counts given under the
heading "path 1" refer to a successful one-step reduction without enter-
ing paths 2 or 3 (see Al). The operation counts given for paths 2 and 3

include those cases which begin with path 1 and end in paths 2 or 3.

Table 1
Operations Required at Step k
Path 1 Path 2 Path 3
4(n - (k+1)) < m < 10(n - (k+2)) + 2 < m <
type-A 20K | gn - (1)) T 1 11(n = (kt2)) + 2
type-B 5 15 <m < 19 42
comparisons 1 4 6
reduction 1 2 3

m denotes number of operations.



The best possible situation occurs when Path 1 is taken at each step; we

then have that the total operations required are

n
) 2(n-j) + 5(n-1)
j=1

wn
]

n(n-1)

= 2 >

+ 5n

n2 + 4n .

The worst possible case will now be considered.

Suppose

path 1 is taken for k = j_,...,5, 3

1 kl

path 2 is taken for k = El,...,ﬂk ;

2

path 3 is taken for k = ml,...,mk3;
where n = kl + 2k2 + 3k3.

. . , 2 .
The total number of operations contributing to the n~ term is

then bounded by the sum S, where

72]
1

2(n - jy o~ j2 +...+ n - jk )
1
+ 6(n - (£l+1) +n - (£2+1) +...+n - (I,k +1)) + k
2

+11(n = (m#2) + 0 = (@ 42) +...+ 0 - (m +2)) + 2Zkg
3

2

3(n - jl +n - j2 +...+n - jk )
1

+ 3({n - tl + 1 - (£l+1)} +...+ {n - £ +n- (Kk +1)})

k

2 2
+ 3({n - my +n - (m1+l) +n - (m1+2)} +...
+ {n - ka +n - (mk3+l) +n - (mk3+2)}) - 2k2 - 7k3
+ 2(n - (ml+2) +...+ n - (mk +2))

3

- (n - iy +...+ n - Jkl)

47



Thus

k k
3 2 3 3 1
S=5n"-Sn+2kn-2 Pn + J - k,n - 2k, - 11k, .
2 2 3 n
3 =1 1 g7t 1 2 ’
Now,
%3 %3
2k,n -2 )} mo< 2ken - 2§07 (14 3(1-1)) = k,(2n-3k;) + k, ,
3 [ | 3 3 3 3
i=1 i=1
and
k n
1 1.2 .1
173, - kmn < ]} 3-kn=->ki+2k, .
4o 1 1 jen-k 41 1 2121
Thus
3 2 3 1.2 .1
S 5_2 n-3n + k3(2n-3k3-10) -3 k1 + 2 k1 - Zk2
< §-n2 - é-n + l(n—5)2
) 2 3
~ 11 2 29 .25
6 6 3°

where we have maximized the expression k3(2n-3k -10) over {k3 t k 3.0}.

3 3

The analysis is not valid unless n > 5.

Let us divide the counts for type-B operations by the corres-
ponding reduction at step k. An upper bound for this number in the
worst case 1s 14. Thus l4n is an upper bound for the number of type-B

operations needed. Therefore, the worst case operation count is bounded

by
11 2 29 25
ry n- - 3 n + 3 + 14n
_11 2 55 25
=% n + 6 n + 3 -

The maximum number of comparisons needed is 2n.
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3. A Pictorial Description of the Algorithm

In the last section we gave a formal description and proof of
correctness of an algorithm to update the factorization of a symmetric
matrix. The main difficulty in obtaining this algorithm was updating
the pivoting strategy while maintaining the triangular structure of M

and ﬁ.

The following diagram represents the algorithm at step k.

("\\

7 () (0 A (HD)
Figure 1
Pivoting in the Updating Algorithm

In Fig. 1, K(k) represents that portion of the factorization of

(k)

X obtained up to step k. C represents a working array that involves

. . k+1) |
information from the vector w and at most three colummns of M. A( ) is
that portion of the factorization of A which has not yet been con-
sidered. TFrom this diagram we see that the pivoting effects neither the

triangular structure of M that has already been computed nor the

triangular structure of that portion of M which has not yet been
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considered.

One can also represent the operations on the elements in a dia-
gram. In the following, d's will represent elements of the diagonal
blocks Dk of D, m's will represent elements of the Mj's which occur
below the block diagonal of identity matrices in the matrix M, and w's

(k)

will represent elements of the vector w = Qz. Let o and A be as in

(k)

Section 2, and we assume that A is in factored form, so only the
lower triangle and diagonal D need be stored. A "~" over an element
means that some operation has altered this element. If a O appears then
that element has been "zeroed out" and is not subject to further
alteration,

Only those elements that need to be stored are represented; the
elements known by definition are left blank; we store the diagonal
matrix D in place of the identity matrices in M. Row permutations are

—
denoted by C or t: ; column permutations are denoted by L’ U_f

The permutation matrices Q are not explicitly represented.

We shall illustrate the algorithm with a 5x5 example.

Case 1:
D, is 1x1
1 ’ f 1 \
(1 d 0
m w
K = m + 0 w [ .
R ]
m w
m w
\ J S




~

D, is computed and

found to satisfy the pivoting criteria,

1
[~ ) (
(2) d 0
m w
A= | m +0 | wll
i R "
m "
n w
L J L J
Case 2:
Dl is 2x2,
' ~ 3 3\
) i [
d 3 0
A= m m +0 | w [
m m A(Z) w
m m w
L J \ /
51 has been computed and
D. O
(2) Compute Q1D1Q§ = ! |, (M,,v) =
0 d
[~ 3 (
(~—+ d \\ 0
. Slmof o d 0
Q1 0 Ql 0 - o | =
A = m m + o w
0 I 0 1 o -
m m A(z) w
L o | m w
4
1]

We are finished with 5

diagonal element in the second position.

1

and are ready to apply

N

does not satisfy the criteria for a 2x2 pivot.

Q, 0

M. QM
o 111

the algorithm to the

51



52

Case 3:

D1 is 1x1 and does not satisfy the pivoting criteria with 52 also 1x1.

~ N \ '4 1
(1) [ d \ 0
m _Tk\ w
X= m m + 0 w [ ]
m m A(3) w
m | m w
y ) L)
D, 0
(2) Compute (M., M.) = (M., MM, M| L [u*
1 2 1 2
0 D
ZJ
r~ 3\ 4 3\
d\ 0
d d 0
A=|m m +o|w [ ]
E m A(3) ;
m m w
L P, L P,

(3) Apply Case 2.

Case 4:

51 is 1x1 and does not satisfy the pivoting criteria, and 52 is 2x2.

[~ 3 ( N
(D d

m d




(2)

(3)

(4)

o D, 0]
Compute (M,, 1)) = (M, M))L, L Lt
o o,
[~ ) )
d \ [ 0
d 4\ 0
A=]d 4 4 +o 0] 1.
m m m ;7
" A3 "
m m m w
! J ()

Compute Q,, M such that anq'l‘ =m 1 |t

0 D2

In (3) the diagonal pivoting strategy could have produced

several different block structures for B and D depending

1 2
on the matrix D. We only show the case 51 is 2x2 and 52 is
1x1,
( 4
d . 1 0 )
LD
t d d 0
01 Q1 0 — . -
A = m m | d +0 | 0|l 1
I 0 I I —_
m m|m w
m m|m w
. T 1‘ 4 J \ J
We are finished with D, and are ready to apply the algo-

1

rithm to the diagonal element in the third position.
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Chapter III

Error Analysis of the Updating Algorithm
1. Introduction

We have updated the symmetric indefinite factorization of
~ t
(1.1) A=A+ ozz
in order to solve the linear system
(1.2) Ax = b .

A method for solving (1.2) is considered to be stable if the computed

result xC satisfies

(1.3) (K+E)xC =b

| -

a vector norm on R” which we also denote by “-".)

- (

where "E“ is small compared to "ZI is the matrix norm induced by
The following analysis is influenced by the error analysis of
the diagonal pivoting method given by Bunch [3]. The solution to (1.2)

is given in four steps:

(1.4) (i) A = MDM~ (update the decomposition),
(ii) Mc = b (find the new right-hand side c¢),
(iii) Dy = ¢ (solve the 1x1 and 2x2 systems),

(iv) ﬁtx =y (obtain the final solution x).

We have presented an algorithm that is algebraically correct for
obtaining (i). There are standard methods for solving (ii), (iii), and
(iv). However, in finite precision arithmetic error is introduced at

each of the steps (i) - (iv).
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Instead of obtaining the exact decomposition of X, we actually

AAAn

obtain M = (ﬁ+Aﬁ), and D = (5+AB) such that MDMt = QAQt + S. Then when
equations (ii), (iii), and (iv) in (1.4) are solved, the errors 6M1,
éD, 6M2 are introduced at steps (ii1), (iii), and (iv), respectively.

Thus, we actually compute M, D, ¢, y, x such that

(1.5) (1) MOM® = Q(a+ozz5)G + s,

(11) (kM )c = b,
(111) (D+D)y = c,

(iv) (ﬁ+5ﬁ2)x - y.

Now, M and D are the exact factors of A. Therefore, steps (i) -

(iv) give the exact solution to the system (K+F)x = b, where

(1.6) F o= (o M) [D + (AD+sD)1(M + (arom )¢
+ M(aB+sD) [ + (afiro,)]®
+ ED(afrom,) + 5.
In this chapter if x = a.e + a 52 +...+ ek, where a, # 0, then
1 2 A 1

we write x = 0(e) and say x is of order ¢ as ¢ > 0. If B is an nxn

matrix with elements bi , then we shall denote B = 0(e)B if

h|
bij = bij¢1j(€)’ where ¢ij(e) = 0(e). In the following analysis we
shall obtain expressions of the form
(1.7) (1)  (aM+sM)) = 0(e)M + G(e),

(ii) (AD+6D) = 0(e)D + H(e),

(i11) (Aﬁ+5ﬁ2)t = ()Mt + G(e).

Using (1.7) in (1.6) gives



(1.8) F = (0(e)M + G(e))[D + 0(e)DI[M + 0(e)M’ + G(e)]t

+ H(0(e)D) [M + 0(e)M + c(e) ]t

+ MD(0(e)M + G(e))T + ME(e)ME + S

0(e)MDMT + G(e)DME
+ M(0(e)D)M*
+ MD(0(e)MY) + MD[G(e) T + MH(e)ME

+ 0(e2)B + s.

2
The 0(e )B term in (1.8) is negligible when compared to the

dominant first order terms. The combined terms give
_ yyd 8 2
F = 0(e)MDM™ + 0(e”)B + S,
if G(e) = 0(e)M, H(e) = 0(e)D, and S = O(e)A. Then

(1.9) ”%" = 0(e);
Al

hence the method is stable.

However, we shall also see that the terms S, G, and E will in-
volve products of the entries of solutions to triangular systems
involving the original factor M. Thus if M is ill-conditioned,

("M” "M_l” is large compared to the number of significant digits avail-
able in our finite precision arithmetic) then the updating procedure
cannot guarantee that the constant in the 0(e) term in (1.9) is of

moderate size.
2. A Detailed Description of the Updating Algorithm

We shall now give a detailed floating point analysis of the
computations performed in our updating algorithm. There are two parts

to a step of the algorithm. An intermediate step of the algorithm

57
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results in a sum of matrices of the form

2.1 s st _ 7(k-1) (k+£)
( ) QkAQk + Ck + A ’
with
k-1 m
~(k-1 ~ o~ o~
A( ) = Z MjD.M;:, A(k+‘e) = z M,D,Mt,: ,
@ o
where £ is 1 or 2. Let w(J) = %.) for 1 < j < m, where w = Z M.wiJ)
w2J j=1 J
0 0 )
and . = . - Mw .
LD W3 il
Part 1 of a step consists in preparing the matrix C, for part 2.

k

This involves possibly bringing the term Mk+£Dk+£M£+£ into the matrix Ck

and performing certain operations on the factors of Ck to obtain a

special form. Part 2 consists in permuting certain columns and elements

of the factors of C, and obtaining the updated ik and D

k k’

We shall now describe an intermediate step in detail.

Part 1.

The previous steps of the algorithm have resulted in

0 0 s B[ o o )t
@ ¢ = |1 0 8 o |1 0
NOSNTED S0 e

with Iél < a|B|, or in

o Vol[o0, wBE

(b) C = w(k)

]



We shall now drop the superscripts.

’

TR

% = | 1 al 0
(v | w
(0 0 o]

1 0 0
i vy I Wl L

{ 2 M' W, )

1 -
v = w =
v, w
We then compute
(0 0
1 0
(2.2) c, =
k 0 I
M '
va M vl M
where

8
(5) = |v.§ +w,8 D + v vt
1 1 k+1 11

B

Now we proceed to part 2.

If (a) holds then we replace Ck by

t

§ o BY[ol | o
I |
O Dyyp O 1IM1<+1||0
B 0 o J{ v I | w
s o gYo o o)f
0 Dk+l 0 1 0] 0
B 0 ag v1 I Wl
]
‘VZM WZJ
70}
0
1 -
> My T I
2
\M'J
0 W(ﬁ)’ 0 0 o \F
0 1 0 0
b
0 0 I 0
oMt Mt ' M
w,-M wlj \VZ M v1 M w2 M w1J
t t
6vl + Bwl B
t t t
+ B(vlwl+wlvl) + cwlw1 vls + wyol.
t t
Bvl + Owl (4]

If (b) holds then we replace Ck by

59
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c | w |’ M2 o[ 10)"
k | k : w Lo o)y Mk { W |
(0 0 ) N 1
I vy Dk ° I v, ’
0 o)
L M' v, | M' Yy )
where we have partitioned
[ 0
Y1
w = ’ = I
Wy Mk .
We then compute
0 0 Dk+ ow Wy oWy 0 0 t
(2.3) c, = |1 0 owy o )| I 0
M' wz—M'wl M' wz-M'w1

and proceed to part 2.

Part 2.
Part 1 has resulted in a matrix of the form
o o}(D b)fo o)t
(2.4) c,=|T oflbv" ojj1 o o
v w \Y w J

where D is a symmetric matrix of order at most 3. We then apply pivot-
ing strategy Sa only to the matrix 5'producing a permutation matrix Q,

and a 1x]l or a 2x2 matrix 5 such that



is given by one of the following forms:

(a) D= (8) 1s 1x1, b = (8), and [6§] > a|B

(0 oY(s o 0 o)t
(2.5) E£ = 1 of{lo © 1 0
vw(B/8) w vt (B/8) w
0
with o = 0—82/6. We then take Bk = (8), ﬁk = 1 , and o is
replaced with 0. Return to part 1. v+w(B/6)l
_t $11 Sn1 £
) Q"= T T b= (8y8y), |6,1] 2 18,,1, and
21 °22
Ialll 3_&[6211. Then
8 0
(2.6) C, = L 11 Li,
0 B
where
2
(85 = 6917/811 By = (B18,9)/813
B = ’
B, - (8,6,.)/8 o - B2/6
2 192177°%11 1/°11
( 0 | 0] 0]
| |
1 ol o
L = | | b
k
621/611 || 1 { 0
CRRACHUNERICYUIRNIRARS

and we have partitioned V = (vl,vz). We then take

61
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0
~ ~ l
Dy = (631> M = 5 /s > and
21" "11
vy + vy (8y1/814) + w(By/8yp))
(0 o) (o o]f
()
0 0 0 0
C =
ketd 1 0 1 0
\V2 wJ va wJ
Return to part 1.
8 §
— | °1 °a
(c) D= s s and max(|611|, |622|) < a|621|.
21 22
0 0)(D 0 0 o]t
(2.7) c, - I ollo o-b%1 I o] -
vV + wbt-ﬁ_1 w vV + wbtﬁmi w
We then take
[ 0
Dk = D, Mk = I s
vV + wbtf_l
t=-1
and replace o by o - b D b
611 521 631
(d) QﬁQt = ) sy is the pivot choice when
21 D 11
5 2
31

Y = b4 t = t
S, 1s applied to D, |611| 3_a|611| for 1=2,3; and b (8,5b5).



0 0 0 0 } 6, 0 O (0 0o 0 0
1 o o o]]o 52 bl 1 0 0 0
2.8) T = [8y/6y 1 0 Ol bS5 |6y /8y L 0 O
550/8,, © 1 0 54,/%11 1 0
L 31 vy Vg W | ;1 2 V3 W )

where v, = vy + v2(621/611) + v3(631/611) + w(Blldll),

\
R I 51
Dy, =Dy, -5~ (8,15 833) »
1|
31
cto_ Wb
b, = by = (B;/811)(85y> 831 »

2

Ql
I

and we have partitioned V = (vl’v2’v3)

We then take

{ 0 }
1
D, = (87)s My = 1657/815) >
8317811
\ vl J
( ~ ~ r t
and o o o)fp, b,\fo 0 O
0 0 O E; o 0 0 O
Cp = |1 0 O 1 0 O
0 1 0O 0 1 0
(Vg Yy ¥ L vy oV, W)
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We now bypass part 1 =ince C 1 is already in the proper form needed to

k+
apply part 2.

631

(e) QDQ = 35 |3 Sy applied to D resulted in

831 %32 $33
the choice of a 2x2 pivot Dl; Idet Bil 3_(1—a2)(max|dij|)2, and

N -
b = (blssz)'

( 0 0 0) Bi o) 0 0 0)
_ I o ollo B 1 0 0
(2.9) T, = _ _
k 3t 1 0 t 1 0
~t ~t ~t ~t
{vl + v2d + Wbl v2 w V1 + vzd + wbl v2 v
where
~t —a
d” = (645, 830D,
~t _  t=-l
B = bl , \
) 5 §
—11%31 t=-1(%31
833 = (6375 850D s B, - b0y 5
32 32
B = s
t=—-1 631 t=—-1
32

and we have partiticned V = (Vl’ v2).

We then take

( 0
- N N I
D =Dyp» M = ~t
d

~t ~t

LVl + v2d + wb1J

and
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(0 0 } (0 o)f
()
0 o 0 0
C =
ketl 1 0 1 0
L V2 w ) \ V2 w J

Return to part 1.
3. Floating Point Analysis

' Now that we have a detailed description of the numerical opera-
tions performed, we are ready to examine the error introduced when these
operations are carried out in finite precision floating point arith-
metic. We shall work in base B, t-digit floating point arithmetic. We

call € = %-Bl_t the basic machine unit. Let

t .
F(8,t) = {6: 0 = 85| T y.g7I|, 0<vy. < (8-D) ,
5213 i

each Gj an integer,
1<y, 2 (B-1), k any integer!.

We then have [10]
= * '
fz(el*ez) CHY 62)(1+e )

where Ie'l < €, whenever 61,02 e FE£(B,t) are floating point numbers, and
* is one of the operations {+,-—, ., /}, and f£(61*62) is the nearest
number in FZ(B,t) to the real number 91*62. We shall also write ££(B)

to denote the computed elements of the matrix (or vector) B.

Lemma (3.1). Consider the vector v(k) defined in part 1(a) of section 2.

) o

Then the components v, satisfy



(v = v 4 ()
where

(3.1) Irik)(e)l < (3+e)e(i-l)max|\)(£)| .
L<k 1

(k)

Proof. The vector v is the vector v, appearing in one and only one

2
of the expressions (2.6) or (2.9) at step k-1. The vector v, in (2.6)
or (2.9) is one of the columns of the matrix V in the expression (2.4).

Since V in (2.4) 1is given by (2.2) or by (2.3), we see that

(3.2) vV = (vék_l) - M'vik_l)) or V=M'",
where
0 L1
- 1 _ (k-1)
I Me41> and S(k=1)
[ :
If v(k) is defined as a column of M, then no error is intro-

duced. However, if

NONINCS

(3.3) 9

M

bd

'v:(Lk_l)

(1)

then let j be the largest index less than k for which v was defined

by a column of M. Then

o ) 0 k
(£-1)
(3.4) = - ) My ,
GO T @] T pfy 1
L@
) -
where we have partitioned v

= tﬂ) so that szif %akes sense. The
v
2

formula (3.4) can be derived from (3.3) using an inductive argument. We

recognize (3.4) as the process we would use to solve the linear system



0
(3.5) Mx = - »
L3
(k) . th .
where v is the result of the k step of that process. Then it has

been shown [6] that-

fl(vik)) = vik) + Tgk)(s) >
where

(3.6) ey < (+ere(i-1) max VO .
i j<B<k i

The bound (3.1) follows from (3.6), but is not as good as (3.6); however,

(3.6) cannot be obtained without prior knowledge of the index j. 0

We shall comment now on the growth of the v(L) in (3.4). Let us

i
consider equation (3.5) further. Since v(J) is defined by that portion

of some column of M (say column i) which lies below the main diagonal,

we may write (3.5) as

Mx = Mei - ei ’

) ) . (0 if §# 4
where e, is the basis vector defined by (ei)j {l ifj =i Thus

M(x—ei) = -e; .
Therefore, the solution ei - x is a column of M-l. This shows that the

vgl) in (3.4) are in fact composed of elements of M_l. We now observe

that undue growth in the viﬂ) in (3.4) indicates severe ill~-conditioning

of the matrix M with respect to solving linear equations.
s k .
Lemma (3.2). Consider the computed quantities fﬂ(wi )). Then if

ICNE

P =

£2 (wi‘“) )

67
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Lemma (3.3). Let Vi denote a component of v

we have the S satisfies the equation
(MT)p = w ,

where the elements 1 , of T satisfy

13

ltg5| < @Dyym e

i3

Here, vy is a constant of order unity and the mij are the elements of M.

Proof: One observes that the wiJ) are computed from the standard back

substitution algorithm. The result then follows from [20]. 0

Let us drop the ff-notation and hereafter regard the quantities

oD

as computed quantities. Then Lemma (3.2) shows that we may write

LD
1
(3.7) MM® + owe® = (D + 0|l iDL W™ )"
;gm)

w(l)
1
+ o(T . wh o+ w[wil)...wim)]Tt)
o™
1

oD
+ oT|.

o

[w(l).

1 ..w](_m)]'l‘t .

Thus we shall now regard the vectors w(k) as exact quantities. The
error introduced from the computation of these quantities in finite

precision is expressed in the error matrix
S = o|Tpw" + wp T" + Tpp T}

(k)

ik). (See Lemma (3.1),

equation (3.2).) Let w§k) denote a component of wik). Then the floating

point computation of D results in



£2(D) =D+ E ,

where E is a block diagonal matrix with the same structure as that of

D. Moreover, the 2x2 blocks of fﬂ(ﬁ) satisfy

(k) (k i Gy
a|6 | > max(|6 )I, |5(k)l)’ where Dk ~%i) ~§i)
8217 %22

and the elements Eij of E satisfy

(3.8) le,.| < ce,

ij! —

where

<

02 ¢ <max(lo |, alg wI)?], 28y w1, o )?])as

ijk
(Here 9 is "o" at the kth step, and Bk is the "B" appearing in part 1

at the kth step.)

Proof: From equations (2.2) and (2.3) we see that the updated diagonal

blocks D, are obtained by decomposing matrices of the form

k
8 Gvi + Bwi g
61 = v16 + wlB Dk+l + cSvlv1 + B(v w +w vl) + owlwi le + ow,
B Bvi + cwi o J

with |6] < a|B| if equation (2.2) was used, or

t
Dk + owlw1 owl

9>
n

if equation (2.3) was used. Here the v's, w's, B, §, a are the pre-
viously computed quantities at step k; we have left off the

superscripts.
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Then
fK(DL) = DZ + EZ’ (£ 18 1 or 2) ,
where a typical (1,j) element of fl(Dl) is of the form

[{[aij +8v vy (The)) (He,)) 1 (T4e,) + ZBviwj(l+64)(1+e )

5
}(1+€6) + owiwj(l+e7)(l+58{l(l+e9)
= Gij(l+e3)(l+e6)(l+59) + Gvivj(l+el)(1+22)(1+e3)(1+e6)(1+59)

+ ZBviwj(1+54)(l+es)(l+e6)(1+59) + owimj(1+e7)(l+58)(l+eg) s

where lejl_i €.
Now, if re < 0.1 and |p| < g, then (l+p)r =1+ rp', where

|p'l < 1.06e [19, ex. 4, p. 80], and if |p1|,...,|pr: < € then
(l+pl) e (l+pr) =1+4+rp ,

where |p| < 1.06e. Thus we see that if the elements of DE are denoted

by 6(4) and the elements of E, are denoted by e(g) then
ij £ ij
(1) , (1) _
éij + Eij 6ij(1+3p1) + dvivj(l+5p2) +

+ ZBviwj(l+4p3) + owimj(l+3p4) ,
where |pj| < 1.06e for j = 1,2,3,4, and |6| < a|B|. Hence,

(1)
Ieij I imax(léijl, a|Bviv , ZIBviw |owiwj|)15(l.06)e .

i i’

Maximizing the quantities which appear in this expression gives the

bound

2|Bkv§k)m;k)|, |0k(m(k))2|)15.9e.

(k) ;2
17, ]

(£)
(3.9) |eij | i-?§§(|51j|’ |ag, [vy

The case we have examined is clearly the worst case for the type

of analysis we have carried out. Thus we take (3.9) as our bound for



the elements of E , (£ = 1,2).

A ~

The next step in obtaining Bk is given by decomposing D1 or D2

according to one of the equations (2.5)-(2.9). Let us refer now to the

proof of Lemma (2.3) of Chapter II. Specifically we consider the decom-
position given in equation (2.12) of Chapter II. There it was shown

that a scale factor p may be implicitly introduced in the last row and

A

column of D, or D

1 This factor has no consequence on the final result.

9°

However, when D1 or D2 is suitably scaled in this way then pivoting

strategy Sa does not choose any of the elements in the last row or

column as pivot elements. We then obtain a computed factorization.

AAAt Q 0 ~ Q 0 t
MDM ™ = (D, + E.) + Fi (i =1o0r 2).

o 1] * tio 1

The analysis given in [3] applied to this (at most) 4X4 case shows that

the elements fg?) of F, satisfy
ij L

(3.10) lfflf')l < maxlafl.") | (34¢).
1] ij 1]
Now (3.10) together with (3.9) give the bound in (3.8). 0

We have given an analysis of all of the operations in part 1 and
of the formation of D. We now turn to an analysis of the final forma-

tion of the elements of M. We begin with
Lemma (3.4). Let ;ij be the ijth element of M with i > j. Then

(3.11) fﬂ(mij) =mgs + mijuij(e) + vij(e) ,

where

Iuij(e)| < e(3+e) ,

and
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1

L) + 0(e™)

|v

ij(e)i 5_mi§|v§k)|(e(3 + max[%;

Proof: We shall give a detailed analysis of the operations used in

forming M. These operations are described in part 2 a-e. We shall have
to examine each case separately. Cases a-e below refer to the opera-
tions performed in part 2 a-e, respectively. The errors resulting from
computing the quantities 8/6, th—l have been accounted for in Lemma
(3.3). Therefore, we shall assume here that we have these quantities

exactly.

Case a: The vector ﬁk is computed by

0
fz(ﬁk) = 1

e0v® 4 WD g5y

Now,

fl(vik) + w§k+l)(s/6)) -

= 08 4+ P (8/6)1 (14e))) (e

= [vgk) + wgk)(B/G)](1+52) + “gk)(e/é)(€1+€1€2)

-z ~ (k)
= m + mooo + wy (B/G)(el+elez)

=m,. +m, e, + (vik) + wik)(e/d))(el+e1e2)

- vik)(€1+elsz)

~ ~ (k)
myp + mg (egtegte ) = vy T (e te e))



Case b: ﬁk is computed by

o, 0 3
o 1
LML) =
621/611
(k+1)
\fl(vl + V2(621/511) + w (61/611))J
Let vj have components vij’ j=1,2.
Now,
~ _ (k+1)
fﬂ(mik) ff,(vil + vi2(621/611) + wg (31/611))

{Ivgy + v;508,1/81)) (e )1 (THey)

+ m§k+l)(81/611)(1+€3)}(l+54)

[vil(l+52) + viz(GZl/Gll)(1+el+ez+elez)

(k+1)

+u)i

(81/611)(l+e3)](l+e4)

+ (1+a4)[vile2 + viz(621/611)(sl+ez+elez)
(k+1)
+ 0g (81/611)83]

< mge Y BnE

k1
+ (e ) [y 945085 /87) + “i T )(31/511))63

+ vil(az—e3) + vi2(6 1/611)(r—:1'+9:2-53+5162)]

. . e
m, + W (egt2e tege,) + vy (€57e5 e, (ey=e3))

+ V12(621/611)(€1+€2—€3+€1€2)(l+€4) .
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Case c: ﬁk is computed by

0
ELQM) = I
£0L(v;,v,) + w1
Let st;l = (8,»8,). Then
ee(,) = (0w + DR, 0oy, + 0PE )

Each of the components falls under the same analysis as case a. We

obtain

Eo@m ) = Wy, +mg(epbeybeie)) = v (eptegey)
and

fl(aij+1) - aij+1 + Eij+1(5i+€§+5ieé) - vyolegteier)
where ﬁik = (Eij’ Eij+l).

Case d: ﬁk is computed by

r 0 1
1
£LQM) = 8,1/811
831781
(k+2)
{fz(vl + v, (8,1/6,) + va(85,/8,)) +w (8,/8,10))

So

(k+2)

Bl(myy) = £LQv ) + v;90851/819) +v,3(8,1/817) + g 77(8,/6,1))

= [{vsg + viplepr/oy) Arepliney)

¥ v55085,/6,)) (e ) f(Ike,) + w§k+2)(el/ell)<1+65)J<1+e6)



) (k+2
= {vyq tvy908,9/879) Fvi4(859/8,7) +uy )(31/511)

+ Vil(€2+84+€2€4) + vi2(621/611)(el+sz+e4+elez

+€4(€1+€2+€l€2))

+ V55(8317/8,7) (egte teqe,) + w§k+2)(61/611)55}(1+€6)

= o <+ ™
mo tmel + vil[€2+E4+€6+52€4+€6(€2+€4+€284)]

8
21
+ viZ[GlI][€1+€2+€4+€6+€1€2+€4(€1+€2+€1€2

+e6(€1+€2+e4+elez+e4(el+ez+elez))]

8
31

+ vi3[all}[e3+e4+e6+e3e4+s6(52+e4+e3e4)]
B

w$k+2) [6_1—] (€5+€6+€ € )

+
11 576

5 5
~ L~ 21 31
= my Fmee T (egtegteged vy "12[5 } + "13[6 ]

B
+ w$k+2)Lj;J]
i §

11
b v, Lo be e te eyme e t0(e) ]
\’il 82 34 65 8283 8556 €

8
21 2
+ viZL_——}[E +e +e, - te €,-€ e6+e4(el+e2+elez)+0(e )]

611 172 74 571275
631 2
== - - +

+ V.4 511 [e3+e4 egteqe, ~EcEg 0(e™)]

Case e: ﬁk is computed by

, 0 }
. I
e (5378398,
FLLCvy2v,) * "3(531"332)511l + D (61,62)5;1]‘
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where we have partitioned V = (v »V ,v3), (81,82,63). Thus if we

~-1

~-1
1 = =
et (531, 32) (8 31° 32)D s (Bl’BZ) (_81,82)Dk be the quantities

computed in (2.9), we have

(k+2) (k+2)

fﬂ(Mik) = (fl(vil §., tw

..+
Vi3°31 By)» £L(vyy 8

Y13°32
Then the components of ﬁk fall under the same analysis as case b.

We have shown that if ;ij is computed from the formulas given in
part 2 a, b, ¢, d, and e using the computed quantities from part 1 and

from the formation of S, then

f£(mij) =m,, + mijuij(e) + vij(e)

1]
Define v = maxlvik)l.

ik
inequality, and recalling that Iekl < € gives

Then taking absolute value, using the triangle

Iuij(e)l < e(3+e) ,
and

(
ve(l+e) in case a,

v(3e(l + 21 ) + 0(52)) in case b,
8
11
|vij(e)i < ¢ve(l+e) in case c,
621 531 2
v(e(3 + 4 3 + 3 3 ) + 0(e”)) in case d,
11 11

\?(3e(l + max(|§ |§32|) + 0(52)) in case e.

nls
By the properties of pivoting strategy Sa we have that
62

_21
811

639
811

1
31| l 321) 1 -a’

<

l, and max(lé
o

8,)).



Thus,

vg5 @ | < v(eG + maxtl, 7221 + o(ehy)

in all cases.

We now return to equations (1.5). Regarding (1.5) (i) we have
shown that Aﬁ.. = ﬁ.. . . + i
i3 1JulJ(e) vij(e), with bounds for uij(e) and vij(e)
given in Lemma (3.4). We also have that AD = E in Lemma (3.3) is block
diagonal with the same block structure as 5. Using the analysis given

in [3, p. 667] we see that in (1.5)(i) and (iv) that

~ A

3 oy [
I%%ﬂ,Mlﬁliidl+MQKmHLﬂmﬁl,
and in (1.5)(iii) we have
IGD..| < |D..|e
iil — '7id
if Dii is a one-by-one block; otherwise, from [3]

lep. . | | (6D, ... | )
A ii A i,i+1 §.€[1+0(€)]|Di+1 il
[COFT BRGNP ’

Finally, we have that the error matrix S, defined in Lemma (3.2)

and discussed in the remarks following it, is bounded by
201112
Isl,, < {2l lell I, + NTIlell 2} ol

< {2n(@+D)y max|m,, B

+ ez[n(n+1)]2Y2max|w§k)l2}|c| s
where y is the constant appearing in Lemma (3.2). The matrix G(e) in
(1.7)(i) and (iii) is given by G = (vij(e)). (Note that G is lower

triangular.)

We have the bound for F given by
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(3.12) Iel|l < 2 maxlvik)ls(B + max(é,

L) |[C |,
i,k

1

(k)2 (k) (k)
+ 2 max(|D,,|, alB, (vi)°|, 2|8,v, Tw, ],
HYALREE V1 AP

|0, )2 |y age| il |,
+ el + o) ot + s, + oe®

We have already mentioned that the |v§k)| and Iw§k)L and ISIm

may grow with n for ill-conditioned matrices M. However, the computa-

tional evidence indicates that the usual remarks concerning the solution
of triangular systems apply: in practice large growth does not occur in
these quantities.

In order to guarantee stability we must also show that the ok's
and Bk's are bounded. We shall do this by showing that the growth of

o, is bounded at each step of the algorithm. This is sufficient since

k
it can be demonstrated that the growth of Bk+l is bounded as long as the
growth of Ot is bounded.

It will be necessary to impose an additional condition on the

acceptance of a 1x1 pivot. The number § in

o)

will be accepted as a 1x1 pivot if |§| > «|B| as before, or if
|06| > aBZ. This does not affect any of the preceding analysis.

We shall begin by establishing several preliminary lemmas.



Lemma (3.5). Let A be symmetric and suppose that A = MDMt. Let the

eigenvalues of A be A, < A, <...5 An’ and let the eigenvalues of D be

1 2

< LRI L Let k be the index such that Aj < 0forlc<j<k,

S L)
andAj>0fork<j<n. Thenkj<cujfor1<j<k,and)\j>cu.
- - - = ]

for k < j < n, where Ve is the smallest singular value of M.

Proof: By the mini-max theorem

t
A, = min max = ﬁx
J dim(S)=j[xeS =x x
|x#0
t
= min max tS_D—S__t
dim(S)=j|seS s M 1M s
| s#0
o
= min max stDs] Sts }
dim(8)=j|seS stsJ stM_lM-tsJ
| s#0

> ¢ > 0, we have for j < k that

|

A, <¢c min max S ]zs = CcH,
J dim(8)=1i{seS s's J
s#0
Similarly, for j > k we have Aj > cuj. 0

For the following discussion we shall also need to know the

smallest singular value of certain lower triangular matrices in order to

apply Lemma (3.5).

Lemma (3.6)., If M= [i 2) , then the smallest singular value of M is
/E, where
c > 1
- 2
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Proof: The smallest singular value of [

1 0 O
If M= Yo 1 0 [, then the smallest singular value of M is /E; where
vy1 0 1
gy
YO+Y1+2

)
10 J is vc, where
vy 1
-2+ 2 - A .

1 0 0
The smallest singular value of Yo 1 O is /E; where
y1 0 1

c= (2rvrz - AAeh v aeied)n

If c = (a+ 2 - /22 + 4a)/2 with a > 0, then

_ (a+2)® - (a’+4a)
2(a + 2 + ¢a2+4a)

2

a+ 2+ Vaz+4a

2
a + 2 + Yal+4ats

|v

2(at2) at2 °
The lemma follows from this inequality. 0

It will also be of interest in the following discussion to bound the

o—norm of the inverse of a 2x2 block.

611 621
Lemma (3.7). Suppose that D = , with a|521| > max(|6

§91 822

11|’|622|)'
Then
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P < T
Proof:
Io™, = 737 Ioll,
where |a] = [6,,6,) - 65 | > 62 - a’s2 = 6§l(l—a2).
Iol, = 18,1 + max(ls,, 1, 16,,1)
< (1+a)|621| .
Thus |07 < Ei:}) [laill) = (1-031521[ . 0

Two more lemmas are needed before we can establish the bounded-

ness of the ck.

Lemma (3.8). Let B ¢ RY™ pe symmetric and nonsingular with eigenvalues

A £ A, %...2 A, where n > 2. Let z ¢ R", and n ¢ R. Let
B' = B + nzz®
Then n max|B£j| > A, where A = min |A,]|.

lfjfp
Proof: Let B' have eigenvalues Hy Sy SeeeSmp. From Lemma (2.2) of

Chapter 1I,

A

>
A
=

n>0= ll =z n— n
while

n<o0=> My <A

I

=
A
>

If A; > 0, then |u | > Al

If A; < 0and A >0, then |u | > |r_| when n > 0 and lugl > |2;] when

1
n < 0.
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If An < 0, then |u1| > IAnl.

We conclude that

p = max |p | > X,

l<j<n 3

By the standard norm inequalities we obtain
! >
n max|Bij| >
and the result 1s established.

Lemma (3.9). Suppose that the k-th step of the updating algorithm has
resulted in
) _

with 0 # 0, |§| < a|B] and o8] < 08%. Then

9 lo| |det ﬁll 1+ coztA—lz|
B2 = P ,
(1+a) Jdet B | (|0 Wt | + 1+ 2
o (D, 0
where M= (M,M), D= ~ |
1’772 0 D
2
D, 0
t Y 1 ~ o~ t
0 D2 ’
and B(k) is that portion of D obtained up to step k. Here o, is the

0
starting "o", and o0 is the modified "o" after k steps of the algorithm.



Proof: At the k-th step we have

a(k)xa(k)t - Ozt e |

il 01 3 o OV ooyl 0 1. )F
=[50 1w, J 0 (s-8%/0) o (| H¥)| 1 |M2\
I v | 0 0 D [ v | J

0
+ o[ B/o }(0, B/o, Wt o+ B/cvt)

wtB/ov
t t -1 0
Now, det(A + 0,22 ) = det A(1 + 0,2 A “z). Also, if p = B/c , and
w+B/ov
wl 01 V[P 0, o ol
B=| M| 1| M2 0 (6-87/0) 0 ML M2 ’
| v | 0 0 D, | v |
then
det A(1 + coztA-lz) = det(B + oppt)
= det B(1 + optB_lp)
~K) . BA L A € -1
= det D {6 - jgadet Dz(l + op B "p)
Thus
¢ -1 ~ (k) - 82 £ -1
(3.13) |det A|]1 + 0gz A z| = [det D' [det D,[]8 -~ *=[]1 + op B p|.
. 2
Since I60| < aBf”, we have
(3.14) |s0-82] > 8% - |60| > (1-o)82 ,
and
(3.15) |6o-8%| < |6o| + 82 < (a+1)B% .

Also, one can show that

83
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w ot [0
MU LM, p= B/o
I v | L - B/oﬂ;lv + ﬁ;l(w+6/ov)
(0
= | B/o ,
LM

~~1 , . . .
where we use M2 to mean the inverse of the unit lower triangular matrix

that occupies the lower triangle of ﬁz. Thus if ¢ = wtﬁ;tﬁ;lﬁglw, we
have
2
t_-1
o B
(6 - =)
Hence
2
t_-1
(3.16) P'B | < E—+ |4
lo||os - 87|

1
< ToTamay * 1]

by (3.14). Using (3.15) in (3.13) gives

|det A||1 + ooztA‘l

|det D(k)||det 52||1 + optB_lpl

z|

(3.17) % (1+a)82 > |8 - 82/0| =

Trerefore, using (3.16) in (3.17) gives

|det ﬁl||l +o0 ztA-lzl

0
~(k 1
ldet 5[ foflo] + 1+ T2

2 lo|

(3.18) 8° > ity

This is the desired result,

Observe that the quantities in (3.18) are independent of the updating
(k)l

process except for |o], and Idet D Now we are ready to prove



Theorem (3.1). Suppose that the k-th step of the updating algorithm has

resulted in

{ ( t
c(k) ) 10 § B 1 0

vV ow B o v ow
. 2
with |6| < alB], and |06|_§ aB . Then the next step of the algorithm
will produce a ¢' of the form

. t~-1

o' =0 - kak bk
with |o'| bounded.
s g1 1) § 8 [ [~
Proof: Let =y , and =u, with
B o Y Y B o 1 tl

Iull 3_|u2| as in Lemma (2.4) of Chapter II. Let nj = uj/(1+yz), j=1,2.

As we have already seen in Chapter II the updating process is

equivalent to forming

0 w n 0 o 1 0 w t
(3.19) (k) r v llo o o .
. = Vv v, L v, 1!
v, \ v, 0 0 n,J v, \' v,
0
where D' and | I | are, respectively, the next diagonal block of D and
v v
the corresponding column of M. 1In (3.19) Wy =Y [ L v+yw, and
w, ) v
1 2
= w-yv.
Y2

The next step is to form

( N 1 t
) 1 0 : o ll D o 0 : v }
A 0 n A
2 v | Vo ) 2 v, vV | Lo} J
. (1 0)(n, 0)(1 o)f )
where D = , and v, = v2—Vv1.
v, 1 0 D'jl{v, I

85



Then we form

1 010 ~ 11 olo
(k+1) ! D+ n,bb l“zb |
C 0 I l ol ___° _ + = 0 1 | 0 s
~ -~ t ~ ~
V2 V| W2 nzb |n2 v2 v | W2
( v
where b = . , and w, = wz-vzwo—le.
1

Finally, we pivot and obtain the updated diagonal block Bk+1'

A

t = ~ ~
Dn,bb~, and let £ = max|Dij|. Then |Dk| > af when D, , is 1x1,

Let 5

c ~-1 1
If it is 2x2, ”Dk+ﬂL»-i )" To avoid cumbersome notation we

shall let B = Dk+l'

D b
The factoring of ¢ 2 gives an updated n = nz-ngbiB lbl,
npb My
where b1 consists of components of b. It can be shown that
1)
w
Wy = (1+72)(wé—Vwi), where w = 1 . Comparing this with the updating
]

w
algorithm described in Chapter II %ill show that

(3.20) o' = (1+y3)2n .

Now, In| 5_|n2| + nglbiB—lbl|

2 2 -1
< Inyl + 302 o 12 57

. -

Hence, if a > 1/2 then

2 2
(3.21) < In ]+ 2 e
. < A~
Inl < imyl + =y — -
1 o0
Let V0 be the smallest singular value of . From Lemma (3.6),
A I
1

0 > /(v P + 2

By Lemma (3.8) we have that 3gzjklwhere A is the smallest eigenvalue of

D (in absolute value). However, Lemma (3.5) implies |ALie min(lnll’|ul),



and thus

1
(3.23) g > 56 min(|n |, |u])

where u is the smallest eigenvalue of D' (in absolute value). Finally

we have that

(3.24) v = by [l < ol < maxclv[, wl, + Iv] vl -

Combining inequalities (3.21)-(3.24) gives

(3.25) In] < |n2| +

2 2 2
v 9n2(”v1” +2)

min(]

BN

Since ||w|]oo and "v”m are bounded we have that v2 = O(Yz) and

"vl"2 = O(Yz). Thus it is sufficient to bound the quantity

4
n,Y

(3.26)

min(lnll,lul

) ‘

Suppose that |8| > |o|. Since v = (o-u,)/8 we have

(o+8) - sgn(c+5)/{o-5)2 + 482

|Y| hl

N

<

Thus (3.26) is bounded since

shall assume that |B| < |0|.

So -

1
Now,

B2

T +1

(1+ 0+ /(+a)? +4) +1.

<1 and |p| is fixed.

-r] =
Ingl = 25

However,

Therefore, we
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Let ¢ = sgn(o+6)/<o—6)2+482. Then
2 2
Y Y2 | [(0=8)+¥]"[(0-8)~p+26]
° 88%0
_ [(o-a> + ¢] [(0_5)2 - wz} . 260Co=0)+y)%
20 462 882c
Thus qu
p < T+ g%’Tz ,
B
where 1 = Xg:%%Qt—£|. Observe that
i, s 5Nz, LI8[2 |
T 5_2[} + ‘Ol + /Ql + '0') + 4‘0, _J

-

<-—[} + o + /Ql+a)2 + 4 ] .

-2

8o < a < 1 so that

By assumption

o2
qu
p 2 <ttt 12
We also have that
1 1
le,| = 5*[(o+6) - w]l = 51[(0—5) -+ 26]
2
1 48
<3 T vt el
Now,
[(o-6) + w| = |o-8] + /]o-8|% + 48° > 2]o-s] .
Thus,

2
B~ 18l
|“2| §.|0_5| + |5| :-(l-a) + |8] .



Therefore,

It follows that

In, |

5-(1+Y2)-2{%%£'+ |s| + lol(r+12)]

4
YN
|* M2} _ 1flsl 2
< = + + +
| —-u[l-a |6] |o] (t+19)
< iEL{_L_,+ o+ 1+ Tz}
4
N,yY
To bound I————1 we consider
1
2 g - B (l+a)B
2
51

But

Thus

But

(o+8) % + 2|0+6|/?o—6)2 + 482 + (0_5)2 + 482

202 + 262 + 2(02—62) + (0-6)2 + 432

562 - 206 + &% + 487

562 + (4-2a)8°

B_
5 -

—_— 2 20

™

[ul-ar o [go—sz + w"]z

2 — 72
j_g—i-l} + o+ /(1+a)2 + 4 ] )
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It follows that

Yz'n 4 no ——
2 ' '
‘ < \—31|1 + o+ /(14a)2 + 4 ]
N1 168" Ml L
2 —_——— 14
< 02 (l+a)[1+a+/(1+a)2+4
808

Using the same notation as in Lemma (3.9) and applying that result gives

2 (1+a) o] [det BN (Jo]]o] + 1 + =)
g . l-a

2 — ~ t -1 *
8 |det Dll |1+cozA z|

Observe that if the previous o's and B's are bounded then |det B(k)| is

bounded. Thus we have bounds

Y4n
2
< K2 .

:-Kl and ‘

4
.Y N,
u

"1

This gives
In| §.|n2|(1 + max(Kl,Kz)) .
But
2.-2{ 1 2
|n2|i[c|(1+'y) L—l_—a+a+r+r .
. . 2,2
Since o' = (1+y") n, we have

1 2
lo'] §_|o|{I:; to+T1T+ 1 ](l + max(Kl,Kz))
This concludes the proof. 0

Theorem (3.1) provides a bound on the growth of ¢ when pivoting is donme.

The following theorem provides a bound in the remaining cases.

Theorem (3.2). If the algorithm updates a 2x2 block and accepts the

updated block as a 2x2 pivot then



o1 = ol 1 + &)

or if a 1xl pivot is accepted from the updated block then
lo'| < |0|[l + Iﬁﬁ]
If § is accepted from [g SJ as a 1x1 block then
lo"| < lo| + max(|a|,|8])/a .
Proof:
Case 1. If § is accepted as a 1x1 block as a result of
s B
o
satisfying |&| 3_a|B|, or |60| > uBZ then
o' =0 - 82/6 .

Hence |0'| j_[c[ {%;’

| A

lol + |o]/e = |o](1 + 1/a) ,

or lo*| < lof + |8]/a .

Case 2. Suppose that a 2X2 block is updated and accepted as a 2x2

pivot. If the old block has elements Gij then the updated block has

elements of the form E.. =§,. + ow,w,. The conditions that must be

ij ij i'j
satisfied are a|621| > max(|611|,|622|), and a|§21[ > max(l§11|,|322l).
Let D represent this 2x2 updated block, and let wt = (wl,wz). Without
loss of generality we assume "w"m = |w1|. Then "wt"m §_2iw1|. In this

case we have

2 e
! g -0w D 1w
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so that
o' < lol@ + 2]ol|w |2I57H]) -
From Lemma (3.7),"5_1” < 1 .
Now,
lowl| = [s,] < 6, 40wl < al6, touw
1 11' — 11 1 21
Thus
9 ~
lowi| < als, | + |81
ia(|8‘21| + |621|)

| A

a(|§21| + |62 t ow,w | + |0w ])

e 2
2a|621| + a|ow1| .

| A

Hence (l—a)|owi| 5_2a|6 , and we have

21I

2
2y 0w
< |°|[1 + 2[11] —5r
|0Wll
|o|[l +——)

Case 3. A 2x2 block is updated and it is found that

A

|o"|

a|321| f_max(lglll,|322|). We use the same notation as for Case 2.

Without loss of generality we assume that lglll z_lgzzl (otherwise &

to
(2]

is brought to the Ell position). Then

2.2
ow

g =0 -
611

Now

2 2
S +cwl| 3_|owl| - |6

11 11I
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so that
2
Jow?] < 15,1 + [5,]
Thus
2
|ow] | 1. 6,41
DTUREN LY
But
1811 < af6y]
< a(]621+ow2w1| + Icwzwll)
= a(]Ele + |0W2W1|)
Thus
|cwi| - a|ow2wl |521|
(3.27) = <1+ oa-% <2.
6., 6.,
A similar argument shows that
2 ~ ~
ow3]  [y,] + 185, a[|621| + Iowzw1|)
LT R G 185,
Thus
|cw§| - a|cw2wl|
(3.28) = 22

1f lwll Z_IWZI then (l—a)|cwi| j_lcwi| - a|0w1w2|, and inequality (3.27)

shows that
Icwi 9
(3.29) = i—i:a

However, if |w2| > |wl| then (l—a)lcwi| 5_(1—a)|cw§| §_|cw§| - a|ow1w2|,
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and inequality (3.28) gives inequality (3.29). 0

Theorem (3.1) shows that the growth of o can be sensitive to
near singularity in A. This can result in two ways. If o is much
larger than the eigenvalues of A then numerically A appears to be a rank
one matrix. Also, one of the updated eigenvalues can be shifted to zero.
This is reflected in the bounds obtained in Theorem (3.1) since one of
the bounds depends on %—where p is an eigenvalue of D, and the other
bound depends upon 1/(1+cztA_lz). The quantity 1+oztA-lz = 0 if and
only if A has a zero eigenvalue. We conclude that the use of the algo-
rithm should be restricted to cases where the matrices involved are well
conditioned. Finally, we do not expect this technique to generalize to
the LU decomposition of non-symmetric matrices since our results are

heavily dependent upon properties of symmetric matrices.



Chapter IV
The Use of Directions of Negative Curvature
in a Modified Newton Iteration

1. Introduction

In this chapter we present an algorithm for obtaining a numeri-

cal approximation to the solution of the following problem:

(1.1) let f: D ¢ R® > R;
find x* ¢ D such that
£(x*) < £(x)

for all x in some neighborhood of x*.

For theoretical reasons we shall assume once and for all that f has two

continuous derivatives on D and that for any x, € D, the level set

0
L(xo) = {x: f(x) f_f(xo)} is a compact subset of P. Additional assump-
tions will be introduced as they are needed. The assumptions just
stated shall be referred fo as assumptions (1.2).

Recall from Chapter I that we denote the gradient of f(x) by
g(x), and the Hessian by G(x). Given a sequence of vectors {xk} c D we
shall use the notation fk = f(xk), gy = g(xk), and Gk = G(xk). We shall
sometimes omit the argument x and write f for f(x), and g for g(x),

etc., when there is no danger of confusion. Throughout this chapter we

. g t \
to denote the Euclidian norm, and x y to denote inner products.

use
The algorithm we shall present may be classified as a descent
method. Usually a descent method determines a descent direction Sy at
the iterate X (i.e. gﬁsk < 0). Then a linear search is performed to
obtain oy > 0 such that f(xk+aksk) :-fk and we take X1 = xk+aksk.

95
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Under some additional restrictions on the choice of ak one can show that

t
lim gksk/"Sk” = 0. The vector s, 1s usually related to g, in such a way
ko0

k
that this limit equalling zero implies that the iterates converge to a
point x* where g(x#*) = 0.

In addition to obtaining such a point x* we would like to be
able to assert that G(x*) is positive definite for this would imply that
f(x*) < f(x) for all x in some neighborhood of x*., Of course, we shall
not be able to accomplish this goal, but through the use of directions
of negative curvature we shall be able to guarantee that G(x*) is posi-
tive semidefinite. For practical purposes this is very strong assertion.
For instance, if the Hessian were known to be nonsingular at all critical
points then the point x* would have to be a local minimum.

Recently the idea of using directions of negative curvature has
appeared in modified Newton algorithms [8,11,16]. In particular we are
indebted to the paper of McCormick [16]. Indeed, Theorem (3.1) is only
a slight modification of McCormick's result. However, this result led
us to consider a new line search strategy. The implementation of this
strategy which we present here is based in a fundamental way on the
factorization of symmetric matrices using the algorithm of Bunch and
Parlett [5] and this is discussed in section 4. In section 5 we give
termination criteria for the new univariate search strategy, and show
how this relates to previous strategies. Finally, in section 6 we give
a convergence result that includes various choices of descent directions
and we suggest a particular way to define a modified Newton iteration.

Since the algorithm is a descent method we shall begin with a

discussion of descent directions.
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2. Descent Directions

The following definitions will be useful throughout this

chapter.

Definition (2.1). Let £: R® - R be twice differentiable in the open set

D.

(a) A point x in D is an indefinite point if G(x) has at least

one negative eigenvalue.

(b) 1If x is an indefinite point then d is a direction of

negative curvature if dtG(x)d < 0.

(c) A pair of vectors (s,d) is a descent pair at the point x

if when x is not an indefinite point then gts < 0, gtd < 0,
and dtGd = 0, while if x is an indefinite point then

g's < 0, g"d < 0, and d%ed < 0.

An example of a descent pair would be to take s = -g(x). Then
if G(x) is positive semidefinite take d = 0, and otherwise take
d = —sgn(gte)e where e is the unit eigenvector corresponding to the most
negative eigenvalue of G(x). We shall see that there are more attrac-
tive choices than this. However, regardless of the specific choice, a
descent pair fails to exist at x only if g(x) = 0, and G(x) is positive
semidefinite.

The search strategy we shall present departs from the usual
strategy discussed in the introduction. Instead of using only one
descent direction and searching in a line determined by that direction,

we shall consider searching along a curve of the form

(2.1) c: {x, = xté (@)s+p,(a)d: a > O}
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with (s,d) a descent pair at x, and with ¢l(0) = ¢2(0) = 0. We hope to

produce an o > 0 such that
(2.2) f(xa) < f(x)

If we let ¢(a) = f(xa) we encounter a univariate minimization problem
where 9" is continuous as long as ¢1,¢; are continuous. The following

lemma gives sufficient conditions under which (2.2) can be satisfied.

Lemma (2.1). Let ¢: R + R be twice continuously differentiable on the
open interval I which contains the origin, and assume that w € [0,1).

Then there is an o > 0 such that

2
¢(a) < ¢(0) + u[%'(O)a + ¢"(0) %T

for all o € [0,0] provided that either ¢'(0) < 0, or ¢'(0) = O and

$'"(0) < 0.

Proof: The mean value theorem implies that for every v > 0 there exists

8 ¢ (0,a) such that

2
o(a) = 6(0) + ¢'(0)a + " (0) %—
+ 2{e"(8) - o"(0)]a? .
Hence,
aZ
d(a) = ¢(0) + u{?'(O)a + 9" (0) 7{1 + r(a) ,
where
q2
r(a) = (1-p) [‘1"(0)0 + ¢"(0) TJ
+2e"(0) - o"(01a” .
Since
Tim 22 ¢ o |
(1'*0+ az

there exists an a > O such that r(a) < 0 for all a ¢ [0,a].
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This lemma not only tells us when (2.2) can be satisfied, but
also that the function f must decrease by a significant amount along the
curve X . It also indicates that a larger decrease is likely when
3"(0) < 0. We, of course, want to use the simplest functions ¢l and ¢2
which will guarantee that the hypothesis of Lemma (2.1) is satisfied.

Observe that if ¢(a) = f(xa) with X, as in (2.1) then

(2.3) ¢'(0)

g(x) (9](0)s + ¢5(0)Q) ,

(2.4) 8" (0)

g(x)"(4](0)s + 05(0)a)

+ (01(0)s + 03(0)) "G(x) (6] (0)s + $3(0)d)

Suppose that gts = gtd = 0 at an indefinite point (this occurs for
instance at a saddle point). Then in order to insure ¢"(0) < 0 without
imposing further conditions on s we must require ¢i(0) = 0, and

¢é(0) > 0. Then (2.3) and (2.4) simplify to

(2.5) 2'(0) = g (43(0)) ,

(2.6) 2"(0) = g(x)"($](0)s + ¢5(0)A)

+ (65(0)d) "6(x) (45 (0)d)

When G(x) is positive definite then d = 0 must be satisfied in order for

(s,d) to be a descent pair. Thus ¢'(0) = 0 and we must have ¢;(0) >0

oo

in order to insure 9"(0) < 0. Therefore, if ¢1(a) = Z BjaJ and
© . j=0

¢2(a) = 'Zoyjaj then we must have BO = Bl = 0 with Bz > 0 and Yo = 0
i=

with Y12 0. The simplest functions of this type are, of course,

$,(a) = az, 9 (a) = a .

In this case
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t
(2.7) ¢'(0) = g(x)d,
" t t
(2.8) 9"(0) = 2g(x) s + d G(x)d .
3. A Modification of the Armijo Steplength Procedure

In Section 2 we introduced the notion of a descent pair. The
motivation for considering the use of a pair of vectors rather than the
simpler strategy of determining a single direction of descent will be
discussed now. We shall present here a modification of a theorem of
McCormick. In [16] McCormick gives a modification of the Armijo step-
length algorithm [2] which includes second derivative information in the
form of directions of negative curvature.

The steplength algorithm will be described now. Given
v,u € (0,1), let {xk: k=0,l,2,...} be a sequence of points derived from
the given point x_. as follows:

0

Determine a descent pair (Sk’dk) at xk and let 1k be the smallest

non-negative integer i such that

- 21 i
(3.1 Vi1 = X + v Sk + v dk e D
and
1
(3.2) f(yk,i) <f t uY [gk kT 5d de ]
Take xk+1 = yk i Lemma (2.1) shows that the iterates are well defined,

and if a descent pair does not exist at x, then we accept x, as a solu-

k
tion to problem (1.1).

Theorem (3.1). Let f satisfy assumptions (1.2) and suppose that

"Sk"’”dk" are bounded independent of k. Then
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(3.3) lim (—gl‘isk) =0
koo
and
. t _

Proof: The sequence {fk} is a decreasing sequence which is bounded
below due to the continuity of f and the compactness of L(xo). Thus

lim (f -f

o k+l) = 0. There are two cases to consider.

Case 1. Suppose the integers {ik} are bounded above by some m > 0.
Then
2m| t 1 .t
Ff-1 2 7w [gksk *32 dekdk‘J
Since

t t
—gksk > 0 and _dekdk'i 0
the conclusion follows.

Case 2, The integers {ik} are not bounded above. Without loss of gen-

erality we assume that 1lim ik = 4o, By the definition of ik’ if
Kk-ro

Op = y(lk_l), then

2| t 1 .t
(3.5) i1 2 fk+“°k[gksk 3 dekdk]
However, due to our assumptions on f and L(xo), a Taylor series argument

and the fact that g;dk < 0 may be used to show that

(3.6) fk+1 j_fk+0i[g£sk + %—dindé] + r(xk,sk,dk,ok) s
with
(3.7) lim r(xk’sk;dk’ok) =0.

k> Ok

Hence, combining (3.5) and (3.6) gives


file:///-/-l
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-r(x, ,s, ,d.,0 )
k>“k’ 'k’ 'k t 1 .t
(3.8) 2 > ~-(1-p) [gksk + i dekdk] .
o
k
The conclusion follows from (3.7) and (3.8). 0

The result presented by McCormick did not specify a choice of

X1 when x, was not an indefinite point, but did suggest the Newton

direction. In the case that X, was an indefinite point then

t
S, = ("gk”/"pk”)pk with P 2 descent direction such that —gkpk Z_clﬂgkn.

t
was required to be a unit vector such that dekdk E-CZAG where

k
In the above

Also, dk

AG is defined as the most negative eigenvalue of G
k

statements ¢

K
1°C9 > 0. McCormick was able to conclude that if infinitely
many indefinite points {Xk } were to occur in the sequence {xk}, then

N

any point of accumulation x of the sequence {x must satisfy g(;) = 0,

k)
]

and G(x) is positive semidefinite with at least one zero eigenvalue. A

specific choice of s, and dk was not suggested.

k
Under the additional hypothesis that the number of critical
points in D is finite, and with a judicious choice of (Sk’dk) one can
show that the iterates defined by (3.1) and (3.2) converge to a point x*
where g(x*) = 0, and G(x*) is positive semidefinite. However, Armijo
type steplength procedures do not take into account any information
about the shape of the function along the curve X, More sophisticated
strategies are available for determining the steplength a .
In the rest of this chapter we shall be concerned with the
choice of (Sk’dk)’ and with a steplength procedure which specifies
criteria for terminating a univariate search along curves xa of the form

(2.1). Finally, a convergence result will be given that indicates these

choices are quite reasonable.
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4. Determining Directions of Negative Curvature

As we shall see, the results of Theorem (3.1) are useful only if

(4.1) (gisk + 0) => (gk +0) ,

and

(4.2) (dIEdek >0) = (g > 0) ,
k

where AG is defined to be the most negative eigenvalue of Gk when X, is
k

an indefinite point and zero otherwise. Intuitively, if (4.1) and (4.2)
hold then the iterates {xk} are converging to a critical point where the
Hessian is positive semidefinite. These statements will be made precise
in sections 5 and 6. Here we present various ways in which (4.2) can be
accomplished. Matrix factorizations will play an important role. The
factorizations we shall discuss in some detail are Gill and Murray's
modified Cholesky factorization [11], and the method of Bunch and
Parlett [5].

Gill and Murray present an algorithm which for any symmetric
matrix A produces a unit lower triangular matrix L, a diagonal matrix D

with positive diagonal elements, and a diagonal matrix E with nonnegative

diagonal elements such that
A+E = 1oLt .

The elements of LDlé and E are bounded relative to the maximum element of
A. This factorization depends upon nonnegative parameters (6,B8). The
parameter B is used to force a bound upon the elements of LD%. The
parameter § in a sense determines the level of positive definiteness
that the matrix A+E is required to have. Given the parameter § > 0,

this factorization proceeds much the same as the Cholesky factorization
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with the exception that when a diagonal element 1s found to be less than
or equal to §, it is modified. This modification 1s expressed in the
diagonal matrix E.

It is possible to obtain a direction of negative curvature from
this factorization when § = 0. Assuming A has a negative eigenvalue,
one computes an index £ such that DEZ-EZL §_Djj-Ejj for 1 < j < n. Then
the solution d to the equation

Ltd= E£ ’

where ez is the unit vector whose £-th component is 1, can be shown to
be a direction of negative curvature.

With this factorization A can have a negative eigenvalue only if
E is nonzero. However, when § > 0 it is possible for E to be nonzero
even though A is positive definite. Thus the direction d obtained above
cannot be guaranteed to be a direction of negative curvature unless
§ = 0. Unfortunately, when this factorization is used in a modified
Newton's method § > 0 must be specified to obtain a proof of convergence.

The factorization of Bunch and Parlett allows an alternative
that avoids this difficulty. We have already discussed this factoriza-
tion in chapters I and II, but we wish to emphasize here the properties
of this factorization relevant to this discussion.

Given any symmetric matrix A the factorization will obtain a
permutation matrix Q, a block diagonal matrix D, and a unit lower tri-
angular matrix M such that

QaQ" = MMt .

The matrices M and D satisfy



(4.3)

(4.4)

(4.5)

(4.6)

The following lemma will show how this factorization can be used

The elements of M are bounded by a fixed positive

constant which is independent of the matrix A.

D is a block diagonal matrix with one-by-one or

two-by~two diagonal blocks.

D has the same number of positive, negative, and zero

eigenvalues as A (Sylvester's Inertia Theorem).

The number of 2x2 diagonal blocks plus the number of
negative diagonal elements which occur as 1x1 diagonal
blocks of D is equal to the number of negative eigen-
values of A. In the case that A is positive semi-
definite, D is a diagonal matrix with nonnegative

diagonal elements.

to obtain directions of negative curvature which satisfy (4.2).

Lemma (4.1). Let A = wew® where W ¢ Ran is nonsingular, and B ¢ R

is symmetric.

Assume that A has at least one negative eigenvalue.

nxn

{zj: j=l,2,...,m} be unit eigenvectors for B corresponding to

eigenvalues

Let z =

e~ R

(4.7)

Then

Ay <A

1 < eee <A <0,

—

2

z, where 1 < k < m and let

t

Wy=12.
2 2 yta
My 2 KRy W] =

yy

Let
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where AA is the smallest eigenvalue of A, and KZ(W) = ”W"HW-IH is the

Euclidean condition number of W.

Proof: If x is a unit eigenvector for A corresponding to A hen

At
t t
X Ax = A, and if u = W x then

A
AA = xtAx = utBu Z_Aluunz .
Moreover, since [u|| < [|W||, and A; <0,
(4.8) A, > A ||w||2
A-"1 )
Now note that from (4.7)
b= | oyl 5[ Iegf - 1
y Ay = z,| B z,| = A, <0
j=]_ J j=1 J j=1 J
| k -1
Since “y" = "W t z z, “ :_kuw | we have
=17
]
A
t L3 A
(4.9) YAy . _j=1 1

<
t = 2p.-1y2 —  25,,~12 °
yoy KW T R
Together, inequalities (4.8) and (4.9) give the desired result.

If Lemma (4.1) is to be useful, then Wty = z must be easy to
solve. Also, the eigensystem of B must be readily available, and the
factorization A = WBWt should be relatively cheap to compute. These
requirements rule out a full eigensystem decomposition of A and also the
factorization of Aasen [1] which gives B in tridiagonal form. However,
the Bunch-Parlett factorization certainly satisfies all these require-
ments with the additional feature that KZ(W) has a bound that is
independent of A.

Fletcher and Freeman [8] have suggested the use of this factori-

zation to obtain a direction of negative curvature. The direction they



suggest corresponds to taking k = m in Lemma (4.1). However, Lemma
(4.1) suggests that the best direction to use is with k = 1 since this
reduces the magnitude of the constant k2[K2(W)]2 and is slightly cheaper

to compute.
5. A Steplength Algorithm

Once a descent pair (s,d) has been determined at a point x then

we are faced with the problem of determining a such that
f(xa)-i £(x)

2 . -
where X, = xt+a"stad, 0 < a. One solution would be to determine a such

that

(5.1) f(Xa) = 2;8 f(xa) .

but this is a very difficult computational problem. It is computation-
ally more desirable to replace the problem of satisfying (5.1) exactly
with the specification of criteria for terminating a univariate minimiza-
tion procedure that is designed to solve (5.1).

Such an approach is motivated by the success of previous algo-
rithms which have been used when a single descent direction is specified.
Given a descent direction s at a point x, one such algorithm is to ter-

minate the line search when an a has been found which satisfies

(5.2) g(x+as) s > ng(x) s ,
and
(5.3) f(xtas) < f(x) + aug(x)ts ,

where 0 < p < n < 1 are preassigned constants. If a sequence of points

= x,+a. s, with x = Xp» 8 < Sk’ o = Oy

1 .
{xkj are determined where X4 %Sk

107



108

satisfying (5.2) and (5.3) for each k, then
t t
(gk+l-gk) Sk i ’(1'ﬂ)gk9k ’
and hence
t
It follows from (5.4) that
t
(5.5) o lls, [l > v(-(1-nygys, /lls, )
where ¥ is the reverse modulus of continuity of g [17, p. 482]. Since

fk+l ﬁ_fk, and f must be bounded below on the compact set L(xo), we have

that lim (fk-

ko

(5.6) (ak”skﬂ) gisk/"skﬂ +0 .

fk+1) = 0 and thus (5.3) implies

Since w(tk) > 0 implies t, » 0 it follows from (5.5) and (5.6) that

k

(5.7) lim g5, /[ls, ]l = 0 .
koo

Usually 8 and s, are related so that (5.7) implies "gk" + 0 which in

k

turn implies “s | + 0. Thus it is concluded that ”x | + 0 and

o1 %l

”gk“ + 0 as long as the a are bounded. This is enough to insure that

W

lim x, = x*
ko k
with x* a critical point of f due to the following lemma given in [17].

Lemma (5.1). Let f: D c R" > R be continuously differentiable on the

compact set DO c D. Let
S = {x: X € DO’ g(x) = 0} s
and assume that § 1is finite. If {xk} c DO is a sequence such that

lim |jx, ,.-x,|| = 0, 1i =0,
loros “ k+1 k” ’ k—:: “gk”
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then lim x, = x*, where x* ¢ S.
ko

Proof: See [17, p. 476].

A full discussion of this type of strategy may be found in [17]. Par-
ticular algorithms of this type are given in [12,17]. The strategy has
a geometrical interpretation which is depicted in figure 2.

Ay

f(xa)

. / L
N

/
/

t
y = £(x) + ong(x) s
y=c¢c+ ung(x)ts

Figure 2
A Search Along x+tas
Here p = n and o* is the smallest positive root of the equation

g(x+as)ts = ng(x)ts. The local quadratic approximation to f(x+op) is

$(0) = £G) + g0 s + 7 o’s6()s

which is convex near o = 0 if G(x) is positive definite as shown in
figure 2. Condition (5.3) guarantees sufficient decrease of the func-
tion so that "gk" -+ 0 which means that f(x+ap) lies below the top line

in figure 2. Condition (5.2) guarantees that the distance “x X

|

does not become arbitrarily small. The picture indicates that the only

k+1

possibility for o* < oq to be small is that x is close to a local

minimum.
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The termination criterion we shall give may be viewed as an
extension of these ideas which are suitable for the situation when an
iterate X, is an indefinite point. We replace (5.2) and (5.3) with the

following rule. If (s,d) 1s a descent pair at x then we terminate the

search when a has been found which satisfies

(5.8) g(x) " (238 + d) > nlg"s + 2a(g"s + Za%a)]
and

2.t . 1.t
(5.9) f(xa) <f+ua[gs + Ed Gd] ,

with O < u < n < 1 as before. Note that when d = 0 these conditions
reduce to those of (5.2) and (5.3). Again there is a geometrical inter-
pretation which is depicted in figure 3.

1

//<;77'* y = £+ ang'd

f(xa)

Y
)

——— 12l

‘/,~y = f + n[agtd + az(gts+dtGd)]

LYy=c¢ + n[agtd + az(gts+dtGd)]

Figure 3
A Search Along x+a2s+ad



Here a* is the smallest positive root of the equation
g(xa)t(2a3+d) = n[gtd + Za(gts +-%dtGd)] .

The situation shown in figure 3 describes the shape of f(xa) along the

curve
C: {x P x =x+ azs+ad}
o’ i

where x is an indefinite point (see figure 4).

k/* C

d

Figure 4
The Curve x+a25+ad
An additional requirement is placed on a steplength algorithm at an
indefinite point. Sufficient decrease of the function must be used to
force the negative eigenvalues of the Hessian to zero as well as to
force the gradient to zero. This is guaranteed by condition (5.9). 1In

addition to this we must not let "x - xk" become arbitrarily small.

k+1
This is accomplished by condition (5.8). The a* pictured in figure 3 is
similar to its counterpart in figure 2. The picture suggests that the
only possibility for o* to become small is for the iterate Xy to be
close to a local minimum. The inflection point which must occur along
the path C must either be crossed or become "flattened out" in the
iterative process.

We note with Fletcher and Freeman [8] that if a direction d, of

k0

negative curvature alone is used (taking S = 0) then the condition
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|8;+1dk| j_—ng;dk is inappropriate for termination of the linear search
because g;dk may be close to zero even far away from a minimum. They
found it necessary to give termination criteria based on an estimate of
the first derivative of f(xa) at the inflection point. The estimate
was obtained from the value of the derivative of a related quartic poly-
nomial at its corresponding inflection point.

The following lemma will show that conditions (5.8) and (5.9)

can be satisfied whenever a descent pair exists at a point x.

Lemma (5.2). Let ¢: R + R be twice continuously differentiable in an
open interval I which contains the origin; and suppose that L(0) < I is
compact where L(0Q) = {a e I: ¢(a) §_¢(0)}. Let u € [0,1) and n € [u,1).

Then if ¢'(0) < 0 and ¢"(0) < O there is an a € (0,°) n I such that

(5.10) ' (a) > n[2'(0) + ¢"(0)a] ,
and

) _ -2
(5.11) 2(3) < 2(0) + u[e'(0)a + 9"(0) -

Proof: The assumption that ¢'(0) < 0 and ¢"(0) < O implies the existence
of B e I with ¢(a) < ¢(0) for 0 < o < B. Let B8 = sup{B: d(a) < ¢(0)
with 0 < a < B}. Then B > 0, and the assumption on L(0) implies B € 1

is finite. The continuity of ¢ implies #(0) = ¢(B8). Thus

2

(5.12) 3(8) > 2(0) + u[e' (08 + ¢"(0) &1,

|v

Define h: I + R by

2

h(e) = ¢(a) - #(0) - n[e'(D)a + ¢"(0) ]

Since u < n we have h(g) > 0. Note also that h(0) = 0, h'(0) < O,
h'"(0) < 0. This together with the continuity of h implies the existence

of §) ¢ (0,8] such that h(g,) = 0, and h(a) < 0 for all a € (0,8,). Now



Rolle's Theorem implies the existence of a ¢ (O,Bl) such that h'(a) = 0,

and (5.10) follows. Also, h(a) < 0 and 1 < n imply (5.11). 0

If we take ®(a) = f(xa) then Lemma (5.2) implies that conditions (5.8)
and (5.9) can be satisfied. In the next section we will show how these
conditions may be used to prove the convergence of a modified Newton

method.
6. Convergence of the Modified Newton Iteration

Now we turn our attention to defining a modified Newton itera-
tion. We shall give a convergence result based on the use of descent
pairs and the steplength algorithm discussed above. The proof proceeds
in two parts. The first result is somewhat independent of the defini-
tion of the iterates. The second part will use the particular way in
which the iterates are defined to establish convergence.

The general iteration from a point X, begins with determining a

k

descent pair (Sk’dk) at x Let

"

(6.1) @k(a) = f(xk + azs + adk)

k

Assume p € (0,1) and n € [u,l) are independent of k. Then o >0 is

determined such that

_ 2
(6.2) Ve = Fe T oS t akdk e?D,
2
*x
11 —
(6.3) f(yk) ﬁ_f(xk) + PQk(O) 7 >
) 1 "
(6.4) Qk(ak) z_n[@k(O) + Qk(O)ak]
Take X1 = e

One might note that due to (5.11) in the statement of Lemma (5.2)
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Q.

we could require f(yk) j_f(xk) + u[%i(o)ak + 0;(0) %] instead of (6.3).

2
However, the additional term does not enhance the convergence result in

any way, while it does give a more stringent requirement to be satisfied

by the univariate search. The first step in the convergence result 1is

Theorem (6.1). Let f satisfy assumptions (1.2). Then the iteration

defined above satisfies

(6.5) lim -g;sk =0,
ko
and
t
(6.6) 1lim -d,G,d, = 0 .
Ko k'k k

. ' - t " = t
Proof: From (2.7) and (2.8) we have Qk(O) gkdk and ¢k(0) 2gksk +

t . 1 ] "
dekdk' Since (Sk’dk) is a descent pair, @k(O) < 0, and ¢k(0) < 0.

Thus (6.3) implies that {xk} < L(xo). By the continuity of f and

compactness of L(xo) we have iiz(fk—fk+1) = 0. Now

ai
- - " —_
fk fk+l > u@k(O) > > 0, so that
2t
(6.7) 1lim 1 818y = 0,
koo
and
2.t
(6.8) lim —,d.G.d. = 0 .
K k'k 'k k

From condition (6.4) we obtain

opa) = 2(0) - @ @(0) > -(1-n)[8;(0) + @} (D)a ]

and hence

1 - &' _ " (11— "
An application of the mean value theorem now yields that for some

Ok € (O,ak),



(6.9) 0p(8)) = 2(0) > ~(1-m)ey(0) .

The desired result now follows readily, for if either (6.5) or (6.6) do

not hold, then there is a subsequence {ki} and a 0 > 0 such that
(6.10) —¢§ (0) >0>0.
i
Hence (6.9) implies that {ak } does not converge to zero. However, if
i
{ak } does not converge to zero and (6.10) holds, then (6.7) and (6.8)
i

cannot be satisfied. This contradiction establishes the theorem.

The {ak} of (6.2)-(6.4) are to be determined by a univariate
minimization algorithm applied to @k(a). Let B > 0 be fixed, and termi-
nate the search when 0 < o < B has been found such that (6.4) is

satisfied with o in place of o If (6.3) is also satisfied we accept

x

= a. If either (6.4) cannot be satisfied (say within a fixed number
of steps) or if o does not satisfy (6.3) we take w to be the largest
element of the set {2_1: i=0,l,2,...} such that (6.3) is satisfied with

aw in place of o and then accept o, = aw. If infinitely many of the

k

o, 's must be determined in this way, then Theorem (3.1) applies so that

k
(6.5) and (6.6) are still obtained. We shall call this process the

steplength rule SR(u,n,RB).

Our next result will show that the iterates defined by this
steplength rule converge to a critical point of f where the Hessian is
positive semidefinite. It is here that specific properties of the

descent pairs (sk,dk) are crucial.

Theorem (6.2). Assume in addition to the hypothesis of Theorem (6.1)

that f has finitely many critical points in L(xo). Suppose that the

sequence {xk: k=0,1,2,...} has been obtained using the steplength rule
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SR(u,n,B) where the descent pairs (sk,dk) satisfy

{”Sk"’ ”dkH: k=0,1,2,...} is bounded together with

t —
(6.12) (gksk + 0) => (gk + 0 and 8 0) ,
and

t -—
(6.13) (dekdk + 0) => (AG + 0 and dk -0 ,

k

as k > «, Then

lim x, = x*
koo k

with g(x*) = 0 and G(x*) positive semidefinite. Moreover, if infinitely

many of the x, are indefinite points, then G(x*) must have at least one

zero eigenvalue.

t
Proof: From Theorem (6.1) we see that lim gisk = 0 and 1lim dek k= 0.
By (6.12) we have g, > 0 and s, -~ 0. By (6.13) we have A, - 0 and
k k Gk
dk + 0. Now,
2

Iy - 5 < 8%lsl + sl
hence lim ka+l - ka =0 .

ko

Therefore, Lemma (5.1) applies and we obtain
lim x, = x*
koo k ’

with g(x*) = 0. Since AG + 0, we also have by the continuity of G
k

that G(x*) must be positive semidefinite. Moreover, if infinitely many
of the x, are indefinite points then every neighborhood of x* contains

an indefinite point. Thus the continuity of G implies that G(x*) has at

least one zero eigenvalue.

0

Obviously, the proof of Theorem (6.1) rests on the steplength
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rule, while the proof of Theorem (6.2) rests on the particular choice of

the descent pairs. Many choices of s, are possible which satisfy (6.12).

k

Indeed, if Ak is any sequence of symmetric positive definite matrices
~1

such that HAkH,”Ak H are bounded independently of k, then choosing Sy

as the solution of

AeS = By
will satisfy (6.12).
In section 3 we gave several ways to choose the dk at an indefi-

nite point so that

t
(dekdk > 0) => (AGk > 0) .

The additional requirements that dk must satisfy are obtained if we
replace dk with iy(AG )dk, where y is a function such that Y(tk) > 0 =>

k
tk + 0, and where the sign is chosen to make g;dk < 0.

The iterates should also reduce naturally to Newton's iteration
as soon as a region is found where the Hessian is positive definite.

Indeed, the main motivation for this strategy is to obtain the iterates

using second derivative information which is based on the true quadratic

model at each X Of course, it is expected that in practice very few
indefinite points will be encountered during the iterative process. In
fact, Theorem (6.2) indicates that the strategy we have presented
actively seeks a region where the Hessian matrix is positive semi-
definite. If, for example, the Hessian G(x) is nonsingular whenever x
is a critical point of f then only finitely many of the iterates can be

indefinite points.

Finally, we shall suggest a way to obtain the descent pairs
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(Sk’dk) which satisfy all of the requirements of Theorem (6.2). 1Imn our
description we assume Gk = MkaMi is the Bunch-Parlett factorization of
the Hessian. Thus we have omitted explicit representation of the per-
mutations Qk which will be present in practice. Given f and X which

satisfy the hypothesis of Theorem (6.2), for k=0,1,2,... define

(6.14) 8, as the solution of

- _.t
M D M8, = ~By

where D, = U X-Ut is obtained from D, by first

k k k k k

_ t
obtaining the eigensystem Dk = UkAkUk of Dk and
then replacing the diagonal elements Agk) of Ak

with

max (|k$k)|, en max [Agk)l, £) ,
1<j<n 1<i<n *

where ¢ is the relative machine precision. In the decomposition of Dk

t

we have Uk k= I, and Ak diagonal. Note that only O(n) arithmetic
operations are required to obtain 5% from Dk'
(6.15) dk is the solution to

1
Wy = £y 1Pz

k
where AD is the most negative eigenvalue and z,
k
the corresponding unit eigenvector of Dk. When Dk
does not have a negative eigenvalue we take dk = 0.

The compactness of L(xo) and the continuity of G imply that the
elements of Gk and the components of g, are uniformly bounded. Thus
(Sk’dk) satisfy the requirements of a descent pair as well as (6.12)

and (6.13) due to the bound on the condition numbers KZ(Mk)'
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The above choice qf (sk,dk) 1s somewhat ad hoc and we make no
mathematical statements concerning the desirability Qf this choice.
However, in the nekt chapter computational results will be reported
which show that this specification of (sk,dk) works reasonably well in
practice. We wish to emphasize that many other choices are possible.

We have not addressed the problem of prdviding an initial step a
to the univariate search. Many strategies for determining the initial
step are possible. However, we have not found a strategy with enough
theoretical basis to recommend it over something very simple such as
taking the initial step to be a = 1 each time. Note, however, that
whatever strategy is chosen must eventually take o = 1 in order to retain

the local quadratic rate of convergence enjoyed by Newton's method.
7. Conclusions

The algorithm we have just described has the following informal
description:
(7.1) Given X, € D
for k=0,1,2,...
(1) Determine a descent pair (Sk’dk)
(2) Determine o by SR(u,n,B)

_ 2
3) X1 = + a8y + akdk .

Step (1) involves evaluating and factoring the Hessian Gk' Step (2)
involves the use of a univariate search that can satisfy SR(u,n,B).

The importance of this iteration is that it represents a natural
extension of previous theory to include second derivative information.

It avoids saddle points and possesses a strong theoretical convergence
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property. Finally, the iteration, even in this preliminary stage of

development, performs well in practice.



Chapter V

Computational Results
1. Introduction

The purpose of this chapter is to present computational support
of the theoretical results obtained in chapters II, III, and IV. The
updating algorithm was tested for timing and accuracy on a large number
of random updating problems. The optimization algorithm was tested on a
set of test problems which have been used extensively at Argonne
National Laboratory for such purposes [5]. In addition to this, the
algorithm was tested on some problems which demonstrate its behavior

when many indefinite points are encountered during an iteration.
2. Testing the Updating Algorithm

There are two important criteria for testing an updating algo-
rithm. The first criterion is that the updating algorithm actually
should represent a computational savings over the alternative of forming
the updated matrix and refactoring. The second criterion is that solu-
tions of linear equations using the updating method should be reasonably
close to solutions obtained by forming the updated matrix and
refactoring.

Timing the updating algorithm and comparing to the alternative
is a straightforward task. In order to address the question of accuracy
one must decide what quantities should be measured and compared. For

each update it seems reasonable to compare

(2.2) Jax_-b]1 /6]
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with

(2.2) lax -] /[ v

for several right hand sides b. In (2.1) the vector X, ig the solution
obtained by forming and refactoring the updated matrix. In (2.2) the
vector X, is the solution obtained by using the updating algorithm. The

quantity
(2.3) = 0 /1=l

should also be computed.

The quantities in (2.1) and (2.2) measure the relative error in
the residual. This relative residual indicates how close the computed
solution is to satisfying the equation Ax = b relative to the size of
the right hand side b. The quantity (2.3) measures how much the answer
obtained by the updating method has deviated from the answer obtained by
computing and refactoring the updated matrix.

The process used to test these criteria can most easily be des-
cribed by means of an informal algorithm. Given a dimension n, we start

with A = In the nxn identity matrix. Then the following iteration is

carried out.
(2.4) A :=1
for k=0,1,2,...,m
(1) z ¢ Rn is chosen with random components in (-1,1);

(2) o € R is a random number in (-100,100).

(3) A=A+ ozzt

(3.1) QuAQu = MuDuMu by updating;
(3.2) QCAQC = MchMc by forming A and factoring;
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(4) for j=1,...,5
(4.1) b e R" is chosen with random components in
(-50,50);
(4.2) Solve Ax = b
(i) Using (3.1) to compute X3
(ii) Using (3.2) to compute X3
(4.3) Compute
@ lax_-o] /[l

(11) [ax -l /{b]l;

(111) = = [/ {6l

The steps (3.1) and (3.2) of iteration (2.4) were timed. These
timings were averaged over the number m of updates. Thus the time re-
quired by the updating algorithm can be compared to the time required by
the alternative of computing A and refactoring. The solution to Ax = b
was computed for five different right hand sides after each update. This
was done to increase the chances of obtaining a large residual
HAxu—b“ /"bH. The quantities (2.1), (2.2), and (2.3) were averaged over
all iterations and right hand sides. The results are shown in tables 2
and 3.

Table 2 shows the above quantities for various values of the
dimension n. In Table 2 UAVE is the average value of "Axu-bII/"bH, CAVE
is the average value of "Axc—b||/"bH, and AVERR is the average value of
"xc—xu" /”xC”. The quantity CTIME is the average time to compute and

refactor A and UTIME is the average time to update the factorization.
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Table 2

Results for Increasing Order

n UAVE CAVE AVERR UTIME| CTIME
51 6x10 | ax10! | 4ax10t | 167 424
10| 2x107*3 | 2x107" | 3x1071% | 320 1567
20 1x101% [ 3x107' | 1x1073 | 706 | 6459
30 | 3x107%% | 7 x107t | 2 x1071% | 1162 | 16606
40 | 8 x 10713 | 2 x107'3 | 4 x 10713 | 1819 | 32468
50 | 2 x107%2 | 3 x1071% | 4 x 10713 | 2533 | 55016

The times shown here are in microseconds. The important thing
to note is the relationship of UTIME to CTIME as n increases. To see

2
that the numbers are in the correct proportion one should compare n~ to

3
UTIME and 2~ to CTIME. Observe also that there is roughly only a one

6
digit loss of accuracy using the updating algorithm. For each of the
results in Table 2 we have taken m = 100 in (2.4).

Table 3 shows the results of a particular updating sequence
computed by the iteration (2.4). In this example n = 10. The updating
process was carried out for 1000 updates. The results show every fifth
update selected from the beginning, middle, and end of these computa-
tions. 1In Table 3 the quantities are not averaged. UERR is
HAxu-bll/Mbﬂ, CERR is HAxc-bI{/HbH, and XERR is "xc—xu" /chﬂ for only
one right hand side. UTIME and CTIME are the timings for each indi-

vidual update in this case. For the entire sequence, the average

=15 13

quantities were UAVE = 2 x 10 '3, CAVE = 3 x 10" !5, and AVERR = 1 x 107 !3.



Table 3
Results of a Long Range of Updates

UERR CERR XERR UTIME| CTIME
6 x 101% | 4 x107'5 | 8 x 10718 | 312 | 1563
7 x107M | 3 x107" [ 6 x1071% | 313 | 1875
beginning | 3 x 10 2% | 7 x 10718 | 3 x 107'° | 521 | 1979
1 x107" | 5 x10715 | 2 x1071% | 417 | 2083
1x10 ™ | 4 x107'5 | 2 x107* | 417 | 1563
5 x 1071 | 6 x10718 | 5 x 107 | 312 | 1667
2 x1073 | 1x107'% | 7 x 107 | 313 | 1562
middle 8 x 101" | 6 x107'8 | 4 x107'" | 208 | 1563
7 x 107" | 1x107'% | 5 x 107" | 312 | 1980
1x10713 | 4 x107%8 | 1 x107'% | 312 | 1667
7 x1071% [ 3 x 10715 | 2 x 10712 | 208 | 1458
5x10713 | 3x1071% | 5 x107t% | 312 | 1667
end 5x10°13 | 1 x1071% | 2 x 10712 | 209 | 1458
2 x10713 | 1x1071% | 5x107'3 | 200 | 1771
1x10783 | 1x10715 | 2 x107*% | 312 | 1563

These results indicate that the error analysis in Chapter III is
somewhat pessimistic. 1In particular, Table 3 shows that obtaining the
factorization by the updating method does not deteriorate much even over
a long range of updates. The timings show that the operation count
given in Chapter II was indeed a worst case analysis. They indicate
that the worst case rarely happens. This is demonstrated in Table 3
since for matrices of order 10 the operation count predicts that the

updating algorithm should require as much work as the alternative.
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One disadvantage of the updating algorithm is the length of
computer code necessary to describe the algorithm. The timing results
indicate that it would be a worthwhile project to see if the length of
code could be decreased; perhaps at the expense of increasing the

operation count slightly.
3. Testing the Modified Newton's Method

The unconstrained optimization algorithm described in Chapter IV
was tested on some standard minimization problems. The computer imple-
mentation is still under development. Therefore, the results presented
here are to be regarded as an indication that the method is promising.
There are a number of practical considerations that must be settled
before this algorithm can be recommended for general use.

One of the practical problems is the choosing of the descent
direction s at an indefinite point. We have described one way in
Chapter IV, but we feel that others should be tried. Also, it is not
clear what the scaling of the descent direction s should be relative to
the direction of negative curvature d.

Another problem is choosing the initial step for the linear
search procedure at an indefinite point. Enough information is avail-
able at an indefinite point to use a cubic polynomial to predict an
initial step. To do this, one interpolates f, f', f'" at x where the
derivatives are taken along the curve x+azs+ad. The resulting cubic
polynomial is then required to achieve a decrease A at its local minimum

0. The number A is the amount of decrease obtained on the last itera-

tion. This process uniquely defines a polynomial p. We then have
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& = (3A-2f')/f" .

We also require that the initial step oy satisfy .5 < o, < 1. Thus we

0
take aq = & if .5 5_& < 1. Otherwise we take the closest endpoint to &.
Obviously there is little theoretical justification for this choice of
s but it does an adequate job when safeguarded as mentioned.

Finally, there is always the task of choosing parameters. For
instance we must specify u, n, and 8 for the steplength rule SR(u,n,R)
(see Chapter IV). 1In addition to this we must specify criteria for
accepting an iterate as an approximation to a local minimum. This, of
course, requires the specification of other parameters.

In the following examples we have taken u = 10_4, n=.9, and

6 . . . . ..
B =10". An iterate x, 1is accepted as an approximation to a local mini-

mum when
(i) The Hessian is positive semidefinite,
(ii) |f

gl < ey asl g D),

(iii) ak—l“sk-ln < (T+/E)(l+“ka),
ez/

iv) g < e Parg

Here £ is the relative machine precision. The parameter 1 is specified
by the user but defaults to 10V if found to be smaller than €. For
these examples T is given the default value. These stopping criteria

are used in the Gill and Murray algorithm. We have adopted them in order

to obtain a good comparison of the two algorithms, These functions were

used as test problems:
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(3.1) Rosenbrock's Problem;

n=2,

2

2 2
£ = (1-x))° + 100(x,~x])",

standard start: (-1.2,1.0).

(3.2) Powell's Function of Four Variables;
n =4,

f

2 2 4 4
(x1+10x2) + 5(x3—x4) + (x2-2x3) + lO(xl-xa) R
standard start: (3.0, -1.0, 0.0, 1.0).

(3.3) Brown's Function with Two Global Minima;

n=2,

£ (xi—xz—l)z + ((xl—x2)2 + (x2-0.5)2 - 12,

standard start: (0.1, 2.0).

(3.4) Powell's Badly Scaled Function of Two Variables;

n=2,

_x2

£ (1o4x1x2-1)2 + (e7¥1 4+ ¢7*2 _ 1.0001)2,

standard start: (0.0, 1.0).

(3.5) Box's Function;
n =3,
10 -X, 48 -X-6 -8; 1084
f = z (e 194 _ 7X201 x3(e i_ e 1))2
i=1

where Gi = i/10,

standard start: (0.0, 20.0, 20.0).



(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

Wood's Function;

standard start:

i

4,

100(x2—

+ 10.1((x2—xl)2 + (x,-1) 2y 4 19.8(x,~1) (x,-1)

2.2 2 2,2 2
xD)7+ A=x))" + 90(x,-x3)" + (1-x,)

Penalty Function I;

n

f

standard start: x; = i, (for 1 < i <mn).

4,

i=1

EXP6;

n

f

6,

13
Yy x A e N s
L3 4 6

where v; <

standard

z,
1

start:

e Se_lozi + 3e_4zi,

(0.1)i, (for 1 < i < 13),

Brown's Badly Scaled Problem;

n

f

2,

(xl-—lO6

2 -6,2 2
Yo + (x2-2X10 ) I (x1x2—2) .

standard start: (1.0, 1.0).

Beal's Function;

n =

f

I

2,

3
1

1=

i\ 2
1(ci-xl(l—xz)) R

where ¢, = 1.5, <, = 2.25, cq = 2.625,

standard start: (1.0, 1.0).

(-3.0, -1.0, -3.0, -1.0).

1

n 2 Do, ]2 -
A Z (x.-1)" + B[ Z x, - | , where A = 10
i io1 i 4

2

-y.) ’

(2.0, 2.0, 1.0, 1.0, 1.0, 1.0).

129
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(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

Rosenbrock's Cliff Function;

n=2,

x.-312
= 1L f _ 20(x1-x3)
= {100 ) (x1 x2) + e ,

standard start: (0.0, -1.0).

Cubic Function;

n=3

7
£= 7 fi + 2,
=1 2 2 . 4
where fl = Xy, f2 = f3 = 0.1x1(x2—l) s f4 = (xz—l) y
2 2 _ 4
f5 = f6 = O.lxl(x3-1) . f7 = (x3 L,

standard start: (2.0, -3.0, 3.0).

Gottfried's Function;
n=2,

f

(x; - 0.1136(xl+3x2)(l—x1))2
¥ (%, + 7.5(2x x,) A-x,))2,

standard start: (0.5, 0.5).

Four Cluster Function;

n=2,

£ = [(x~x5) (x,~sin(x,)) ]’
+ [(cos(xz)—xl)(xz—cos(xl))]z,

standard start: (0, 0).

Hyperbola-Circle Function;
n=2,

_ 182 2, 2 .2
f = (xlx2 HT + (xl+x2—4) ,

standard start: (0.0, 1.0).
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Table 4 shows the results of these tests on problems (3.1) -
(3.15) with the starting point x0 taken to be the standard start. The
results of the Gill and Murray algorithm on the same problems are also
given in this table. For each problem the first entry is the result of

the algorithm presented in Chapter IV and the second entry is the result

of the Gill and Murray algorithm. The quantities represented are:

NITER = the number of Hessian evaluations,
NFEV = the number of function evaluations,
t 2
gg_"g” ’
POSDEF = T if the Hessian was found to be positive
semidefinite at the solution, and F otherwise,
NEGCNT = the number of indefinite points encountered
during the iteration,
FLAG = 0 means normal termination.

1 means abnormal terminatiom.
(We note that for either algorithm an abnormal
termination may have been indicated even though

the approximation was close to the solution.)
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Table 4

Results of Tests with Standard Starts

# NITER NFEV gts POSDEF | NEGCNT | FLAG
21 28 5x 10 19 T 0 0
3.1 -
23 29 6 x 10 27 0
29 30 5 x 10 2® T 0 0
3.2 -
25 25 5 x 10 21 0
8 10 0.0 T 0 0
3.3 -
9 10 1x 10 08 0
138 239 1x 10°° T 2 0
3.4 —
186 344 2 x 10 1
14 18 2 x 10727 T 2 0
3.5 ~76
10 10 4 x 10 1
38 48 2 x 107" T 1 0
3.6 17
39 50 1 x 10 1
34 43 2 x 10”23 T 0 0
3.7 —
36 44 1 x 10 0
527 1000 6 x 10°° F 527 1
3.8 —
47 382 4 x 10 0
8 10 2 x 1012 T 1 0
3.9 ~T3
10 2 x 10 0
9 11 9 x 10°2Y T 2 0
3.10 —
9 71 2 x 10 0
27 28 3 x 10720 T 0 0
3.11 —
28 29 1 x 10 1
66 67 2 x 102 T 0 0
3.12 -
33 33 1 x 10 0
-25
8 16 9 x 10 T
3.13 — 3 0
4 1354 4 x 10 1
11 12 1 x 10'25 T 0 0
3.14 s
14 33 1 x 10 0
6 7 0.0 1
3.15 o 0
7 8 9 x 10 0




The algorithm presented in Chapter IV requires the calculation
of the Hessian from an analytic expression in order for the underlying
theory to be valid. However, one may want to use the algorithm with a
finite difference approximation to the Hessian. In Table 5 the results
of using such an approximation on problems (3.1) - (3.15) are presented.
The headings in this table are as in Table 4. Again we use the standard
starts for Xg It should be noted that except for Powell's Badly Scaled
Function (3.4), there is little difference between the behavior of the
algorithm with finite differences and with analytic derivatives.

Table 5

Results from Using Finite Differences

# NITER NFEV gte POSDEF| NEGCNT| FLAG
3.1 21 28 1 x 10 '8 T 0 0
3.2 29 30 7 x 10 26 T 0 0
3.3 8 10 3 x 10 28 T 0 0
3.4 | 553 1000 1 x 10° F 546 1
3.5 14 18 3 x 10 2° T 0
3.6 38 48 5 x 1017 T 0
3.7 34 43 3 x 10 2! T 0 0
3.8 561 1000 8 x 10 ° F 561 1
3.9 11 23 2 x 10719 T 2 0
3.10 9 11 3 x 10 19 T 2 0
3.11 34 b 2 x 107 '8 T 16 0
3.12 66 67 2 x 107°2 T 0 0
3.13 8 16 3 x 10 17 T 3 0
3.14 11 12 2 x 1020 T 1 0
3.15 6 7 6 x 10 0 T 1 0

The use of standard starting points on these test examples does

not fully reveal the performance of this algorithm. Some of the

133



134

standard starts are in regions such that little or no negative curvature
is encountered during the iteration. In order to demonstrate how the
algorithm performs when many indefinite points are encountered, we
include results of the algorithm on problems (3.5), (3.8), (3.9), and
(3.13) with random starting points. These results are presented in
tables 6, 7, 8 and 9. In each table the results from ten random starting
points are given. For each point there are two entries. The first is
from the algorithm presented in Chapter IV and the second is the result
from Gill and Murray's algorithm on the same problem.

Table 6

Box's Function

# NITER| NFEV gts POSDEF| NEGCNT| FLAG
25 36 1 x 10 2° T 21 0
1 —
24 140 | 4 x 1078 1
16 17 | 2x 103! T 3 0
2 —2u4
36 97 | 1 x 10 1
14 15 | 3x 103 T 3 0
3 =27
27 70 | 5 x 10 1
. 20 26 1 x 1020 T 2 0
20 20 | 6 x 10733 0
26 42 .0 T 22 0
5 =25
37 118 | 5 x 10 1
22 41 | 1 x 10732 T 17 0
6 -22
26 64 | 1 x 10 1
20 33 1 x 1022 T 18 0
7 =27
_____ 19 26 | 1 x 10 0
. 18 22 | 4 x 10”28 T 3 0
) 9 | 2 x10 2! 0
. 16 20 | 5 x 10°2° T 1 0
14 14 | 1 x 10728 0
Lo 12 16 | 8 x 10 32 T 7 0
33 95 | 2 x 107 2° 1




Table 7
EXP6

# NITER| NFEV gte POSDEF | NEGCNT | FLAG
) 485 730 | 2 x 102! T 41 0
2 81 overflow 1
, 6 6 | 6% 10 F 6 1
135 198 | 4 x 107° 1
5 25 25 | 2 x 10® F 25 1
79 147 | 2 x 10723 0
. 202 276 | 5 x 10728 T 200 0
108 353 | 2 x 10 1
5 8 71 | 6 x 107 F 8 1
98 418 3 1
; 40 431 | 4 x 10 20 T 38 0
128 253 | 4 x 10°° 1
, 335 543 | 2 x 10 !° T 59 0
129 227 | 9 x 107" 1
. 98 138 | 5x 1072 T 32 0
88 474 4 1
o 865 | 1000 | 2 x 10’2 F 865 1
112 332 2 x 10~ 1
10 810 | 1000 | 5 x 10:: F 810 1
108 358 | 1 x 10 1
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Table 8

Gottfried's Function

# | NITER | NFEV gts POSDEF | NEGCNT| FLAG
=T
26 29 |2x10° | T 3
1 =30
27 29 | 2 % 10
18 26 | 3 x 1018 T 3
2 —
19 22 | 5 x 107%°
12 17 | 8 x 1072° T 3 0
3 14 15 | 1 x 10722 0
21 29 | 1 x 10720 T 6 0
4 13
1 | 1001 | 2 %10 1
19 27 | 5 x 10720 T 8 0
5 15
1 | 1001 |2 x10 1
13 15 | 1 x 10”27 T 3 0
6 12
1 | 1001 | 9 x10 1
25 27 | 1 x10°1° T 2 0
7 =72
25 26 | 4 x 10 0
21 25 | 8 x 10”2} T 4 0
8 15
1 | 1001 | 2 x10 1
15 16 | 1 x 10 27 T 2 0
9 16
1 | 1001 | 4 x 10 1
14 16 | 1 x10”2® T 3 0
10 14
1 | 1001 | 3 x10 1




Table 9

Brown's Badly Scaled Problem

# | NITER | NFEV gte POSDEF| NEGCNT| FLAG

22 43 | 2 x 107%3 T 14 0

1 =53
24 105 2 x 10 0
) 21 43 | 2 x 107%3 T 14 0
21 89 | 8 x 10717 1
21 40 | 2 x 103 T 13 0

3 =12
21 91 4 x 10 1
. 19 45 | 2 x 10 '3 T 8 0
19 8L | 4 x 10 > 1
21 40 |[2x107° | T 14 0

5 —-17
21 90 4 x 10 1
] 19 42 2 x 10 °° T 12 0
21 95 2 x 10 19 1
; 21 41 2 x 10 19 T 14 0
22 99 1x10 8 1
o 22 41 2 x 10 43 T 15 0
21 101 2 x 10 43 0
o 23 44 2 x 10 1° T 16 0
23 111 1 x 10 '3 1
10 19 36 2 x 10 19 T 10 0
21 97 4 x 10 % 1
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Tests using random starts were made with the other functions as
well. However, with the exception of problems (3.5), (3.8), (3.9),
(3.10), and (3.13), the results shown in Table 4 were consistent with
results using random starts. On Beal's Function (3.10), the two algo-
rithms behaved quite differently depending upon the starting point. The
problem exhibited a lot of negative curvature. However, one algorithm
would do much better than the other on one starting point, but the oppo-
site situation would occur on another starting point.

We have compared these results with the results obtained by the
algorithm of Gill and Murray [11l], and have found them to be competitive.
This is encouraging since the Gill and Murray algorithm has undergone a
thorough development and is one of the best codes available.

The results shown here indicate that the method presented in
Chapter IV is promising. Further development is needed in the practical
problem areas discussed at the beginning of this section. However, the
evidence so far indicates that a fully developed algorithm has the
potential of being a reliable and efficient method for unconstrained

optimization.



ENTER 1x1

Appendix Al

PATH 1 | START

Update 1x1 Block

Update

the Kth

column.
K«<K+1

If
next block
is

1x1

next block

Join the next
1x1 block to
form a 2x2

2x2

GO TO PATH 1

PATH 2

y

Update column
Kand K + 1
K<«K+ 2

next block

Update
2%2 block

ENTER 2x2

Pivot and
factor
obtaining two
1x1 blocks

]

Update the
Kth column.
K<«K+1

v

GO TO PATH 1

GO TO ENTER 1x1
GO TO PATH 2
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Do a
1x1 pivot
and
factor

v

Update
the k-th
column.
K<«K+1

y

2x2 block
to form a 3x3

Do a
2x2 pivot
and
factor

v

Update
the K-th and
K+l-st columns
K<« K+ 2

!

GO TO ENTER 2x2

GO TO ENTER Ix1




Appendix A2

SUSROUTINE SYMUPN(AYNLDsNeSIGMA+ZCHANGE QW)
DOUBLE PRECISICM SIGMA

INTEGER N, NLD .
DOUARLE PRECISIC™ ACNLDWNT2Z(N)yCHANGE(N) yWIN)

INTEGER Q(N)

R T T T L R Sy e e T T T T T

2 Xz aXaXaXaXaXaXaXsEaalakalaKe o e aNa e Na e N ol o R Na R o N Nal g Na NN o NN R el o Na NN o Na e Na o KuNaNaNa N o NaNa Na Na Ral e

THIS SURBRCUTINE COMPUTES THE UPCATED SYMMETRIC FACTCRIZATION
OF AN N X N SYMAETRIC MATRIX A FOLLOWEC BY & RPAMK CANE UPDATE
OF THE FORM A + SIGMA%ZZ2Z' . IT IS ASSUMED THAT

QAQ' = MCH4!

WITH D BLGCK DIAGONAL CONSISTING OF 1 X 1 AND 2 X 2 DIAGONAL
PLOCKSy, AND M OCCUPYING THF LOWER TRIANGLE CF THE PHYSICAL
ACRAY A, THE BLOCK STRUCTURE OF D IS INDICATED BY THE
ARPAY CHANGE .

CHANGE(K) 1 IF ENTRY K IS A 1 X 1 BLOCK
2 IF ENTRY K IS THE START OF A 2 X 2 BLCCK
THE DETERMINANT OF THE 2 X 2 BLOCK WHICH
STARTS AT ENTRY K-1.
THE ARRAYS A,G.PIVOT ARF OVERWRITTEN WITH THE UPCATED
FACTGRIZATICM

MOM' = QUA ¢ SIGMAZZZ')C*

THE UPPER TRIAMGLE CF THE PHYSICAL ARRAY A IS NOT ALTERED
IN ANY MANNFP, THUS A CNPY OF THE ORIGINAL MATRIX A MAY BE
STORED IN THF UPPER TRIANGLE CF A IF A HAS CIMENSIONS

N X N+1. THE VECTOR Z IS NCOT ALTERED.
A

e ko ok ok kR ke

A 1S A RECTANGULAR ARRAY WHOSE LEADING DIMENSION IS
NLD. THIS ARRAY IS ASSUMED TQ CONTAIN THE SYMMETRIC
MATRIX A IN FACIQREC FCRM AS CESCRIRED A3S0VE. THF
LOWER TRIANGLE GF A CONTAINS THE MATKRIX M. THE BLOCK
DIAGOMAL MATRIX D IS STORED IN THE CORRESPONCING
BLOCK DIAGCNAL LOCATICNS OF THE ARRAY A. THIS IS
POSSTBLE SINCE [IF O(1,J) (I .NE. J) 1S hLCNZIERO
THEN M(1,J) IS 2ERQ. THEREFORE, THESE LOCATIONS
AS WELL AS THE DIAGONAL ENTRIFS OF & MAY BE USED TO
TO STORE D

NLD THE LEADING DIMENSION CF THE ARRAY A,

N THE DIMENSION OF THF MATRIX A.

SIGMA THE SCALAR DESCRIBED ABGVE.

2 THE N DIMENSIONAL VECTCR IN THE UPDATINd FORMULA.

CHANGE THE N DIMFENSTOMAL ARPAY WHICH INDICATES THE BLOCK
STRUCTURE 0OF THE BLOCK DIAGONAL MATRIX D. THE
CONTENTS OF THE ARRAY CHANGE ARE DESCRIBED ABOVE.

0 AN N GIMENSIONAL INTEGFR ARRAY THAT INDICATES THE
PIVOTING NECESSARY TO ORTAIN THE FACTORIZATION.

L AN N DIMENSIGNAL LINEAR WORK ARRAY.

PPt TP T ELE LI L L LA S S S bbb
DOURLE PRECTSINN MAXNUM
POUBLE PRECISION ALFA,011,D021,031,022,032,033,81,82,83,U1,U0,

1 TeT1leT2,NETHLLWL2
INTEGER 01|°2'03'I']0'IvilvK.KMlyKPl'KPZQKp3'J

ALFA={1.000 + DSQRT(17.000))/8.0D00

100.
100.1
100.2
100.3
100.4
100.5
100.¢&
100.7
100.¢
10G.9
101l.
10l.1
101.2
101.3
101.4
101.5
101.6
101.7
101.8
101.9
102.
102.1
102.2
102.3
102.4
102.5
102.6
102.7
102.8
102.9
103.
103.1
103.2
103.3
103.4
103.5
1G3.¢
103.7
103.8
103.9
104,
104.1
104.2
104.3
104.4
104.5
1C4.¢€
104.7
104.8
104.9
105.
108.1
105.2
105.3
105.4
105.5
105.6
105.7
105.8
105.9
106.
106.1
106.2
106.3
106.4
106.5
106.6
106.7
106.8
106.9
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PO 100 J=1,N 107.
WEJI=2(N(J)) 107.1
100 F.ONT INUE 107.2
K= 1 107.3
101 CONTINUF 107.4
c 107.5
c THE PRICESSING R€GINS HERE 107.¢
¢ * 107.7
KP1=K#+] 107.8
KP2=K+2 107.9
IF((K.LT.N).AND. {CHANGE(KPL1).LT.0)) GO TO 115 :82.1

c .
C THE NFXT BLOCK 1S A 1 X 1 BLGCK 1n8.2
c . 10443
T=h(K) 108.4¢
B1=SIGMA%T 108.5
C11=A(K,K}4B1*T 108.¢C
IF(KP1l .GT. N) GO TG 202 108.7

DN 102 J=KPL,N 108.€
W) aWlJD)-A(J,KI*T 108.9

102  CONTINUE 109.
202  CONTINUE 109.1
103 {ONTINUE 107.2

c 1C9.3
c ENTER 1 X 1 165.4
c 109.5
IF(K.LT.N) GO TO 104 109.¢€
A(K,K)}=011 105.7

c 10S.0
c THE DECOMPOSITICGN IS COMPLETE IF K=N 105.5

c 110.
RETUPN 110.1

c 110.2
104 Ul=DARS{D11) 110,32
U0=DABS(B1) 110.4
IF({UL.LT.{ALFA2UO) ) LAND. (U1#*DARS(SIGMA) JLE. ALFA®UQeUO)) 110.5

1 GO0 TO 106 110.¢
SIGMA=SIGMA~AL*B1/D11 110.7

At = 81/011 110.6
AlK,K)=D11 110.9

c 111.
C UPDATE THE K-TH COLUMN OF M. 11i.1
c 111.2
IF(KPl .GT. N) GO TN 205 111.3

CO 105 J=KP1,N 111.4
AlJsK)=A(JK)+BL*EW(J) 111.5

105 CONTINUE 111.6
205 CONTINUE 111.7
K=KP1 111.6

GO TO 101 111.9

¢ 11z.
106  IF{{CHANGE(KP2) .LE.0).AND.(KP2.,LE.N)) GO TQ 108 112.1

c 112.2
c A 2 X 2 BLOCK IS FORMED BY CCMBINING THE NEXT 1 X 1 BLOCK 112.3
c WITH BLOCK K. 112.4
c 112.5
B2=W(KP1) 112.6
T=82 112.7
C21=82%*@1 112.8
B2=SIGMA*B2 112.9

D22=A(KP ] ,KP1)+B2*T 113.
L1=A(KP1,K) 113.1
N22=022+L1%D21 113.2
B82=82+L 1%81 113.3
021=D21+L1*011 113.4
£222D22+L1%D21 113.5
¢ 113.6
c INCLUDE INFORMATION FROM THE (K+1)=ST COLUMN OF M. 113.7
c 113.8

IF (KP2 .GT. N} GO 7O 207 113.9



s NeaNeNaNal

leXeNaNal

[aNalgl

[a X g X3

DD 107 J=KP2,N
W) =W ) -A (I KPL)*T
A(J KI=aldK)=ALI KPL)*L]

107 CONTINUE
207 CONTINUE
60 TN 117

108 CONTINUE

IF THIS PORTION OF THE CODE IS REACHED WE ARE IN THE CASE OF A
1 X 1 SINGULAR BLAOCK FOLLCOWED BY A 2 X 2 BLOCK. THIS 2 X 2
BLOCK IS JOINED TO THF 1 X 1 BLOCK TO FORM A 3 X 3 MATRIX D.

Tl=W(KP1)

T2=W(KP2)

B2=SIGMA %T1]
B3=SIGMA*T2
D22=A{KP1,KP])+52%T1
D32=A(KP2,KP1)+h3%T]
U33=A(KP2,KP2)+83%T2
D2i=T1*81

D31=T2=*8]

L1=A(XP1,K)
L2=A(KP2,K)

T=L2%D11
£33=D33+L2%(2.000%031+T)
031=D31+T
£32=D32+L1%D31+L2%D21
T=L1%011
022=D22+L1%(2.0D0%021+T)
C21=D21+T

82=B2+L1=81
B3=B3+1L2%81

KP3=K+3

INCLUNE INFORMATICN FROM THE (K+1)-ST AND (K+2)-ND CCLUMNS
OF M,

1F (KP3.GT.M)} GO TO 209
DO 109 J=KP3,N
W =Wl =(A(JI KPLISTL+A(JyKP2)*T2)
ACJyKI=ALI W KI=(A(JyKPLISLLI+A(J,KP2)}%L2)
109 COMTINUE
209 CONTINUE
Ul=MAXNUM(C11,022.033,11)
UQ=HAXNUM(D21,031,D32,10)
1F (Ul.LT.(ALFA*UO}} GO TO 112

A1l X1 PIVOT WILL BE USED

Cl1=1

Q2=2

Q3=3

CALL PIV1IX1ID11,021,031,022,D032,033,814B82+B83,CHANGE,Ql,
1 Q2+039114KyN)

K1=K-1+0Q1

SIGMA=SIGMA-D11%B1*H1
UPCATE THE K-TH CCLUMN OF M

IF{KP3.GT.N) GO TO 210
00 110 J=KP3,N
T=A{JsK)
A(JK)=A{J,K1)
AlJyK1D)=T
A(J o KI=A(JIoK)I+D212A(I4KPLY4D31*A(J,KP2)+BL*W ()
110 CONTINUE
210 CONTINUE
KM1=K=-1

lls.
114.1
114.2
114.3
114.4
114.5
114.¢
114.7
114.8
114.9
115.
115.1
115.2
115.3
115.4
115.5
115.6
115.7
115.8
115.9
116,
116.1
116.2
116.3
116.4

1 16.6
116.7
116.8
116.9
117.

117.1
117.2
117.3
117.4
117.5
117.¢
117.7
117.8
117.9
118.

l118.1
118.2
118.3
118.4
118.5
118.6
118.7
118.8
118.9
119.

119.1
119.2
119.3
119.4
116.5
119.¢€
119.7
119.8
119.9
120.

120.1
120.2
120.3
120‘4
120.5
120.6
120.7
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C
c
C

[N aNal

111
211

112

113
213

INTERCHANGE THF CORKESPONDING ROWS OF M,

IF (KMl .LT. 1) GO TC 211
CO 111 J=1,KMl
T=A(K,J)
Al(KyJ)=ALKL W J)
A(K1,d)=T
CONTINUE
CONT INUE
I1=01(K)
Q{K)=Q(K1)
QiK1l)=1

A{KsK)=D11
A(KP1,K}=D21
A(KP2,K)=D31
Cil=D22
£22=033
€21=032
R1=8B2

B2=83

K=KP1
KP1=KpP2
KP2=KP2+1

GO T0 117

CONTINUE

A 2 X 2 PIVOT WILL BE USED

Ql1=1
02=2
Q3=3

CALL PIV2X2(D1l1+021+0D31,C22,032,033481,B24B3+CHANGE,SIG“A,C1,

Q2+03,10,KsN)
Kl=K=-1+Q1l
K2=K-14+Q2
I=0(K}
Q(K)=0(K1)
CiK1)=1
1=32{KP1)
Q(KP1)=Q(K2)
Q(K2)=1]

UPDATE THE K-TH AND (K+1)-ST COLUMNS GF M,

IF (KP3.GT.N) GO TC 213
00 113 J=KP3,N
T=A(J,K)
A(J K)=A(J,yK1)
AlJ,K1)=T
T=A(J,KP1)
A(Jvkpl)=A(J'KZ’
AlJ K2} =T
AL KYI=A{J KI+D31*A1IJ,KP2)+R 12w ()

AlJsKPL)=ALJ4KPL)+D32%ALJ,KP2)+32%W(J)

CONTINUE
CONT INUE

INTERCHANGE THE CORRESPONDING ROWS GF M.

KM1l=K~1

DO 114 J=1,KM]
T=A(K,J)
AlKyJ)=A(K1,J)
A{K]LlyJ)=T
T=A(KP1l,J)
ALKPLlyJ)=A(K2,J)
A(K2,J)=T

CNNTINUF



s ¥sXalaXaNaNaNalel

SOOO (o]

s NaXel

115

116

117

118
218

119

A{K+K)=D11

AlKP1l,K)=021

A(KPL KPL)=022

A{KP2,K)=0D31

A{KP2,KP1)=N32

D11=N33

Bl1=83

K=KP2

KP1=X+1

KP2=K+2

GO 79 103
CONTINUE

THE DIAGONAL BLOCK BEGINNING AT ENTRY K IS 2 X 2 « THF UPDATECD
CIAGGNAL RLOCK D IS REQUIREN TO SATISFY ‘

ABS(D21)*ALFA .GT. MAX(ABS(CLl) , ABS(D22)).

1F THIS IS NOT SATISFIED THE BLOCK 1S SPLIT INTO TwWC 1 X 1 BLOCKS.

Ti=W({K)

T2=W(KP1)

R1=SIGMA £#W(K)

R2=SIGMA*G(KP]1)

Dl1l=A{KsK}+B1%*W(K)

C21=A(KP1,K)+B2¥K(K)

D22=A(KP 1, yKPL)+B2%KH(KP1)

IF (KPl.GE.MN) GG TO 117

0O 116 J=KP2,N

Wl =w(J)=CA(J,kKI*TL + A(JIKPL)%T2)

CCNTINUE

CCMTINUE

ENTER 2 X 2
THE 2 X 2 BLOCK WILL BE PROCESSED

Tl = 0.000
UL=MAXNUM{D11,0224+T1,11)
IF (Ul.GE.(ALFA*DABS(D21))) GO TO 119

A 2 X 2 PIVOT WiILL BE USED

CET=D11%022-D21%*D21
CHAMGE (K ) =2

CHANGE (XP11=DET

A(K KI=E11

ALKPL,K)=N21
A(KPL,KP1)=022

IF (KPl.FQ. N) RETURN
T1=(D22%B1-D21%B2) /DET
T2=(-D?1%81+D11%82)/DET
IF (KP2 .GT. N} GO TO 218

UPDATE THE K-~TH AKD (K41)=-ST COLUMNS CF M.

DO 118 J=KP2,N
T = W(J)
ALIWKI=A(J KI+TLT
ALJIKP1)I=A(J KPL)+T2%T
CONTINUE
CONTINUE
SIGMA=SIGMA~ (TI*BI+TZ*82)
K=KP2
GO TO 101
CNNT INUE

127.8
127.9
128.
128.1
128.2
128.3
126.4
128.5
128.6
128.7
128.8
128.9
129.
129.1
129.2
129.3
129.4
129.5
129.6
129.7
129.8
129.9
130.
130.1
130.2
130.3
130.4
130.5
130.6
130.7
130.8
130.9
131.
131.1
131.2
131.3
131.4
131.5
131.¢
131.7
131.8
131.9
132.
132.1
132.2
132.3
132.4
132.5
132.6
132.7
132.8
132.9
133.
133.1
133.2
133.3
133.4
133.5
133.6
133.7
133.8
133.9
134.
134.1
134,.3
134.4
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[aEaKa)

aXaNal

[aNaKa] (]

[aNaNal

120
220

121
221

122

123
223

A ]

X 1 PIVOT witl BF USED

IF (11.NE.2} 6O TU l22

INTZPCHANGE THE ROWS AND COLUMNS GF M IF NECFSSARY.

T=D11 "
011=n22
n22=1
T=61
B1=62
gz=7
1=0(K)

T Q(K)I=QIKPL)

Q{kP1)=1
IF (KP2.GT.N) GO 1O 220
DO 120 J=KP2,N
T=4(J,K)
Al Kl=A{J,KP1)
A{J KP1)=T
CONTINUF
CONTINUE
KMl=K-1
IF {KML LT. 1) GO TQ 221
00 121 J=1,KM1
T=A{K,J)
AlKyJ)=a(KP1,J)
A(XPl,4)=T
CONT INUE
CONT INUF

CONTIHUE

PROCFSS THE TWwl 1 X 1 BLOCKS

CHANGE (K ) =1

CHANGE (KP1})=1
022=022-~(N21+*D211/011
C21=D21/011 '
82=p2-81%D21

B81=B1/D011

IF (KP2.GT.N) GO Tn 223

UPDATE THE K-TH CCLUMN UOF M,

END

D0 123 J=aKP2,N

ATJ K)I=ALI W KI+D21%A(J,KPL)+R1I®*W(J)
CONTINUE
CONTINUF
A{K,K)=D11
A(KPLl,K)=D21
SIGMA=SIGMA -BL*C11*B}
f11=022
81=R2
K=KP1
KP1l=KP2
KP2=K+2
GO 70 103
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140.5
SUBRCUTINE PIVIXLIDL11,021+031,022,032,C33,8L,82,B34CHANGE, 140. ¢
1 - Q1,062,034 114K, H) 140.7
NOUBLE PRECISION DLL,L21,031,(22,032,933,81,62,83 140.8
INTEGFER Q1,02,03,11,K,M 140.9
POUBLE PPECISION CHANGE (N) 141.
C*‘i*#**ﬁ##*ﬁ#**t*#*****#\-**####*V*ﬂ‘ﬂk**#ﬂ‘t#*#t#***#"**l‘##t****###*## 141 ol
c 141.2
c , 141.3
c THIS SUBROUTINE PERFOEMS A 1 X 1 PIVOT. GIVEM A 3 X 3 141.4
c SYMMETRIC MATRIX D=(C1J) wWhICH SATISFIES THE I X 1 PIvVOT 141.5
c CPITFRIA WITH D{I1,11) AS THE PIVOT ELEMENT. THE 3 X 3 MATRIX D 14l.6.
c IS PERMUTED TN BRING L(IL,I1) TC THE (1,1) POSITIGN ANC 141.7
c THEN THE FIRST STEP OF THE FACTOPIZATION IS DONE IN PLACE. 161.6
c 141.0
c 142.
CEBEB e R R LR R AR A XX AT LR E G Rkt k kb kb ksl xok ks kL% 142.1
c 142.2
DOUBLE PRECISION T 142.3
INTEGER KP1,KP2 142.4
KP1=K+1 142.5
KP2=K+2 142.€
GO TO (10,20,30),11 142.7
c 142.8
c THE MAX ELEMENT IS 522 142.9
c 143.
20 T=011 143.1
C11=D22 143.2
B22=T 143.3
c 143.4
reca 14302
€32=031 143.7
. £31=T 143.6
o
82=81 144.1
81=7 144.2
G1=2 144.3
a2=1 144.4
GO TO 10 144.5
c
¢ THE MAX ELEMENT IS D33 i:::?
¢ 144.8
011=033 145,
033=7 145.1
c 145.2
T=C21 145.3
D32=7 145.5
c . 145.6
7=81 145.7
81=83 145.8
B3=Y 145.9
c ‘ 146.
Q1=3 146.1
Q3=1 146.2
c .
c THE MAX ELEMENT IS D11 }22.2
c 146.5
10 D22=D22-(D21%D21) /D11 14606
032=C32-(N31*p211/011 146.7
033=033-(031%D31) /D11 146.8
gl=81/011 146.9
82=02-B1%D21 147,
B3=83-81%*D31 147.1
CHANGE(K)=1. 147 .4
RETURN 147.5

ENO
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SUBROUTINE PIV2Xx2(011,C02)1+031,022+¢N32,033,81+82+83,CHANGE,SIGMA,
1 Q1+,Q2,Q3,104KyN)

CouatLs PRECISING M114,0214022,031,032,033,11,82+83,51C7A

IMTEGER Q1,02403,104KyN

DOUBLE PRECISION CHANGE(N) :
CRRRRRE YIRS TAREXS AN RS R IR RGN SRR L LREKR IR F SRS A IR N ARE RIS LT BONERES S

THIS SUBROUTINE PEFFOPMS A 2 X 2 PIVCT ON THE 3 X 3 MATRIX

D = (DIJ)e THE MAXIMUM OFF-DIAGONAL ELEMFENT S B+ OUCHT TG THF
{2,1) POSITION. ITS ORIGINAL LOCATICN IS INDICATED EY THE
VAR JTABLE 10:

10=1 D21 IS THE MAX ELEMENT
10=2 D31 IS THE MAX ELIMENT
10=3 D32 IS THE MAX ELEMENT

THE FIRST STEP OF THE FACTOFIZATINN CF THE MATRIY (D1J) 1S
CARRIED DUT IN PLACE USING THE 2x2 pPIVOT.

EEABL XA AR F AR R AR AR YRR L AR PR B USSR EA B AR EEE LR R R AER XN SR T HE B R EE RS

AN

INTEGER KP1,KP2
CouALE PRECISION S,T,CET

KP 1=K+l

KP2=K+2

GO T0 (10,20,30),10
20 CONTINUE

s NeXe]

D31 1S THE MAX ELEMENT

T=C22
£22=033
£33=7

T=D21
£21=031
031=T

Q2=3
Q3=2
Gn TC 10
30 CONTINUE

D32 IS THE MAX ZLEMENT

[aXaNal

T=011
Cli=D22
D22=N33
D33=7

T=r21
C21=D32
C£32=D31
D3l=T

T=81
B1=82
B82=812
B3=T

Ql=2

C2=3

Q3=1
10 CONTINUE

147.6
147.7
147.8
147.%
14¢.

148.1
148.2
148.3
1648.4
148.5
148.6
148,7
14£.8
L48.5
149.

149.1
149.2
149.3
149.4
149.5
149.6
149.7
149,72
149.9
150.

150.1
150.2
1°0.3
150.4
150.5
150.¢
150.7
150.8
150.9
151.

151.1
151.2
151.3
151.4
151.5
151.6
151.7
151.8
151.9
152.

152.1
152.2
152.3
152.4
152.5
152.¢
152.7
152.8
152.9
183.

153.1
153.2
153.3
153.4
153.5
123.6
153.7
153.8
153.9
154,

154.1
1564.2
154,323
154,.4
154.5



N21 IS THF MAX FLEMENT
THF 2 X 2 PIVOT 1S NDONF HERF

e XaNalp]

NET=C11%N22-C21%721
1=(022%031-021*232)/0ET
S=(-C2'1%D31+C11%D32)/0UFT
A3=B3-(T*BL+SxH2)
N32=033-(T*031+5%D32)
031=7

n32=$
T={(022*P1-D21%R2)/DET
S=(-C21#B1L+D11%R2}/0ET
SIGMA=SIGMA-(T*R] +5S*B2)
8l1=T

R2=S5

CHANGE(K) =2
CHANGE(KP1)=DET
CHANGE(KP2) =1

RETURN

ENC

COURLE PRECISION FUNCTTON MAXNUM(A,B,C,1)
DCURLE PRECISIAN A,8,C

INTEGER 1
R e s gl L L e e S P I e PR I e

c

C THIS FUNCTIGN FINDS THE MAXIMUM OF THE ARSOLUTE V2LUES OF A,B,C
C AND INOTICATES WHICH OF THE VALUES IS SELECTED BY SETTING

C I = 142+43 RESPECTIVELY.
C
c

P I R P s e L e L e T s eI AT 22

POUBLE PRECISION S,T
I1=1
T=CABS (A}
S=CABS(B)
T1F (S.LE.T) GO 10 10
T=5
1=2
10 CONTINUE
S=CABS{C}
IfF {S.LE.T) GO TO 20
T=S
1=3
20 CONTINUE
MAXNUM=T
RETURN
END

154.¢
15 .7
154.8
154.9
155.

155.1
155.2
155.3
155.4
185.5
155.6
155.7
155.8
155.9
156.

15¢.1
15¢.2
156.3
156.4
156.5
156.6

156.7
156.8
156.9
157,
157.1
157.2
157.2
157.4
157.5
157.6
157.7
157.8
157.5
158.
158.1
156.2
158.3
158.4
158.5
156.¢
158.7
158.8
158.9
159.
159.1
159.2

149
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SUBRCUTINZ SOLVE(A, LD yN,CHANGE 4Q, X, IFAIL)
INTZGER NoNLD,IFAIL

DoUBLE PRECISIOM ACRLC o ND o XIN)yCHANGE(N)
INTZGER QUIN)

C##‘*****t#ﬁv*##W*ttﬁf*##utﬁ##t#tttt###t&"tt‘#"tt“ltt‘tt‘t‘ﬁ‘tﬂt"‘

laXnlslzisiniziskukalsiasisiekskaknkakekaialglsNaEalalisNaNa N aNelaloNaNa e RalaNaNeNelaNe e Ne e Wy

[aNaRasNel

10

20

THIS SUBROUTINF COMPUTES THE SOLUTIGN TO AX = B.
THE MATPIX A IS ASSUMEC TO BE IN THE FACTOPED FORM
QAQ*t = MDH!

WHERE M IS BLNCK UNIT LOWER TRIANGULAR AND D [S BLOCK
OTAGONAL WITH 1X1L AMC 2X2 OIAGGNAL BLOCKS. IT IS

ASSUMED THAT Y, D AFE CUTPUT FROM THt POUTINE SYMUPL

AND THAT THAT THESE ARPAYS AFE STCPET IN THE LCHWFER
TRIANGLE OF A, ON [NPUT THE ARPAY X CONTAINS THF

RIGHT HAMD SIDE B AKD CN OUTPUT X CONTAINS THE
SOLUTINN VECTOR. IFAIL = 1 I1F THE SYSTEM IS

SINGULAR (N0 SPLUTICN Tt THIS CASE) CTHERWISE IFAIL )
IS RETURNED WITH THE VaLUE O (A SOLUTICN WAS OBTAINEC).

LR 23 2 2 0 kR 2l b )]

A THE ARPAY A 1S RECTANGULAR WITH LEADING CTIMENSICN NLC.
THE SECOND DIMENSION MUST BE GREATER THAM OF ECUAL TC A.
THE ARRAY A IS ASSUMED TN HAVE THE FACT O ZATICN OF THE
MATRIX A AS CESCFPTIBED IN THE SUBROUTIMNE SYMUPD.

NLD THE LZADING DINMENSICN OF THE ARRAY A,

N THE DIMENSIGN CF THE MATRIX A,

CHANGE AN N DIMFMSIONAL VECTCP WHICH CONTAINS A DESCRIPTICN
OF THE ABLOCK STRUCTURF OF N, 2AND THE CcTEOMINANT
OF EACH 2X2 DIAGCONAL OF C. SEE THE DOCJUMENTATICH: FOF
THE SUEROUTIME SYMUFC FOR A MGRE COMPLETF CFSCFIPTION
OF THE CONTENTS GF CHANGE.

0 AN M DIMENSIOKEL INTEGER A°RAY WHICH CUNTAINS THE
PIVOTING USLD TD OBTAIN THZ FACTCRIZATICN OF A,

X AN N DIMENSIOMNAL VECTCR. THE CONTENTS OF X ARE
DESCRIBED AuOVE.

IFAIL AN INTZGER VARIAEBLE THAT INDICATES wWwrEM A IS SINGULAR,
THE CONTENTS OF IFAIL ARE DESCRIBED ABCVE.

EBEXARRR L PR LARRERAYXEEREEEAZ R BR EREEERRACBEE R TR A SR PR L XX SR XD R ERRRE R &

DOUBLE PRECISION 7,S
INTEGFR T+JsKeIPL,1P2
DOUBLF PRECISION W(50)
TFAIL = 0
DO 10 J = 14N

WlJ) = X(Q(J))
CONTINUE

BACKSOLVE THE LOWER TRIANGULAR SYSTEM AND INVERT THE CIAGONAL
BLCCKS.

I =1

IF (1 .GE. N} GO 7O 60

IP1 =1 + 1

IF {(CHAMGE(IP1) .GT. 0) GO TO 40

IF {CHANGE(IP1) .EQ. OCO) GO TO 1000

1%9.3
159.4
159.5
1€9.¢
159.7
169.8
159.¢
1¢0.

160.1
160.2
1¢0.3
1€0.4
l16n.5
160.6
160.7
1¢0.8
1¢0.9
161.

l161.1
1€1.2
l6l.2
1€¢l.4
161.5
1€l.¢
161.7
1¢l.8
lel.9
le2.

le2.l
1¢2.2
162.2
162.4
1¢2.5
162.¢
162.7
1e2.73
162.°¢
1AZ.

lé3.1
163.2
1¢3.3
1€2.¢
1€¢3.5
1é3.¢
163.7
1¢3.8
163.9
1¢4.

1¢4.l
164.2
164.3
164, 4
164.°
164.6
1¢4.7
164.8
166,96
165.

16S.1
165.2
165.3
165.4
1¢5.5
1¢5.6
165.7
165.8
1€65.9
leb.

les.1



[a NaNal

(2 X g Nal (g

aXaNalal (2}

a0 o [aNaleNel

Ao 0

[2aX g Nal

30
130

40

50

60

WE HAVE A 2 X 2 PIVOT AT STEP I

IP2 =1 + 2
S = Wi}
T = W(IP})

1F (IP2 .GT. N} GC TO 130

N2 30 J = 1P2,N
WlJ) = w{J) = (S*A(J,]) + TxA(J,]IP1))

CONTINUE
CONT INUE
wil) = (A(IP1,IPL1)*S - ACIPL,I)%T)/CHANGE(IPL)
WIIPL) = (=A(IP1,1)%S + A{1,1)%T)/CHANGE(IPL)
1 = 192
GO TO 20
CONTIMUE
WE HAVE A 1 X 1 PIVOT AT STEP |
T = W)
NO S0 J = IP1+N
WlJ) = W(J) = AQJd,1)=T
CONT INUE

IF (L(1,1) .5Q. 0.000) GO TO 1000
WD) = W(IV/A(I,1)

I = IP1
GO TC 20
I =N

INVERT THE LAST DIAGONAL BLCCK ANC INITIALIZE
FOR THE FORWARD SOLUTICN

IF (CHANGF (1) .GT. 0.0CN) GC TO 65
IF (CHANGF(I) .=Q. OCO) GO TC 1000

THE LAST BLOCK IS 2 X 2
IT HAS ALREACY BFEN INVERTED

IP1 =1 -1
1 =1-2
Gad TO 70

65 CONTINUE

THE LAST BLOCK IS 1 X 1

I (A(N,N) .EQ. 0.00C) GO TO 1000
K{N) WIN)/A(NyN)

1Pl I
1 1 -1

70 CONTIMNUE

FORWARD SOLVE THE REMAIMNING UPPER TRIANGULAR SYSTEM

1IF (I «.LE. 0) GO TO 1001
IFf (CHANGE(1) .GT. 0.0CO0) GO TO 90

2 X 2 PIVOY

1P2 = 1IP1

IPl = 1

1 =1 -1

DO 80 J = IP24N
WIIPL) = WUIPL) — ALJ,IPLI*W(J)
wil) = WD) = ACJ,1)*W (1Y)

80 CONTINUE

166.2

166.4
1¢6.5
léG. €
166.7
166.8
1€6.9
167.

167,.1
167.2
167.3
167.4
167.5
167.6
167.7
167.8
167.9
166.

l166.1
166.2
1€6.3
l68.4
168.5
168.¢
168.7
1€E.8
168.9
169.

169.1
169.2
169.3
1€69.4
10G9.5
169.¢
166.7
169.8
169.9
170.

170.1
170.2
170.3
170.4
170.5
170.¢
170.7
170.8
170.9
171.

171.1
171.2
171.3
171.4
171.5
171.6
171.7
171.8
171.9
172.

172.1
172.2
172.3
172.4
172.5
172.6
172.8
172.9
173,

151
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tP1 = 1 173.1

1 ‘=1 - 1 173.2

GO TO 70 173.3

C 173«

c 1 x1 plvor 173.5

c 173.¢

90 DO 100 J = 1PLl,N 173.7

WD) = wWll) - A(J,1)%4(J) 173.06

100 CONTINUE 173.9
1P1 = | 174,

I = 1 -1 174.1

GO TQ 70 174.2

C 176.3

C 174.4

1000 CNNTINUE 174.5

d 174.6

o THE VMATRIX 1S SINGULAR 174.7

c 174.¢
1FAIL = 1 174.¢
RETURN 175.

d 175.1

1001 CONTINUE 175.2

c 175.3

C THIS IS THE NOKMAL RETURM « o o A SOLUTICN wWAS FOUND 175.4

C : 175.5

£O 110 J = 1,H 175.¢

X(Q(J)) = wiJ} 175.7

110 CONTINUE 175.¢

RETURN 175.v

END 176.
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